时滞双线性系统的全阶自适应观测器设计

A. Sassi, H. S. Ali, M. Zasadzinski, K. Abderrahim
{"title":"时滞双线性系统的全阶自适应观测器设计","authors":"A. Sassi, H. S. Ali, M. Zasadzinski, K. Abderrahim","doi":"10.1109/ICOSC.2017.7958741","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of the design of an adaptive observer for a class of time delay systems, in order to give a suitable estimation of the system states and its unknown parameters simultaneously. Based on a descriptor LPV system approach, we propose a simple full order adaptive observer via Linear Matrix Inequalities (LMI's). Those LMI's permit to fulfill the conditions of the estimation errors stability, relying on Krasovskii Lyapunov approach for time delay systems.","PeriodicalId":113395,"journal":{"name":"2017 6th International Conference on Systems and Control (ICSC)","volume":"127 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Full order adaptive observer design for time delay bilinear system\",\"authors\":\"A. Sassi, H. S. Ali, M. Zasadzinski, K. Abderrahim\",\"doi\":\"10.1109/ICOSC.2017.7958741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of the design of an adaptive observer for a class of time delay systems, in order to give a suitable estimation of the system states and its unknown parameters simultaneously. Based on a descriptor LPV system approach, we propose a simple full order adaptive observer via Linear Matrix Inequalities (LMI's). Those LMI's permit to fulfill the conditions of the estimation errors stability, relying on Krasovskii Lyapunov approach for time delay systems.\",\"PeriodicalId\":113395,\"journal\":{\"name\":\"2017 6th International Conference on Systems and Control (ICSC)\",\"volume\":\"127 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th International Conference on Systems and Control (ICSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2017.7958741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2017.7958741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类时滞系统的自适应观测器的设计问题,以便同时给出系统状态和未知参数的合适估计。基于广义LPV系统方法,利用线性矩阵不等式(LMI’s)提出了一种简单的全阶自适应观测器。这些LMI允许满足估计误差稳定的条件,依赖于时滞系统的Krasovskii Lyapunov方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full order adaptive observer design for time delay bilinear system
This paper addresses the problem of the design of an adaptive observer for a class of time delay systems, in order to give a suitable estimation of the system states and its unknown parameters simultaneously. Based on a descriptor LPV system approach, we propose a simple full order adaptive observer via Linear Matrix Inequalities (LMI's). Those LMI's permit to fulfill the conditions of the estimation errors stability, relying on Krasovskii Lyapunov approach for time delay systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信