行人属性识别的部分引导网络

Ha-eun An, Haonan Fan, Kaiwen Deng, Hai-Miao Hu
{"title":"行人属性识别的部分引导网络","authors":"Ha-eun An, Haonan Fan, Kaiwen Deng, Hai-Miao Hu","doi":"10.1109/VCIP47243.2019.8965957","DOIUrl":null,"url":null,"abstract":"Pedestrian attribute recognition, which can benefit other tasks such as person re-identification and pedestrian retrieval, is very important in video surveillance related tasks. In this paper, we observe that the existing methods tackle this problem from the perspective of multi-label classification without considering the spatial location constraints, which means that the attributes tend to be recognized at certain body parts. Based on that, we propose a novel Part-guided Network (P-Net), which guides the refined convolutional feature maps to capture different location information for the attributes related to different body parts. The part-guided attention module employs the pix-level classification to produce attention maps which can be interpreted as the probability of each pixel belonging to the 6 pre-defined body parts. Experimental results demonstrate that the proposed network gives superior performances compared to the state-of-the-art techniques.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Part-guided Network for Pedestrian Attribute Recognition\",\"authors\":\"Ha-eun An, Haonan Fan, Kaiwen Deng, Hai-Miao Hu\",\"doi\":\"10.1109/VCIP47243.2019.8965957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian attribute recognition, which can benefit other tasks such as person re-identification and pedestrian retrieval, is very important in video surveillance related tasks. In this paper, we observe that the existing methods tackle this problem from the perspective of multi-label classification without considering the spatial location constraints, which means that the attributes tend to be recognized at certain body parts. Based on that, we propose a novel Part-guided Network (P-Net), which guides the refined convolutional feature maps to capture different location information for the attributes related to different body parts. The part-guided attention module employs the pix-level classification to produce attention maps which can be interpreted as the probability of each pixel belonging to the 6 pre-defined body parts. Experimental results demonstrate that the proposed network gives superior performances compared to the state-of-the-art techniques.\",\"PeriodicalId\":388109,\"journal\":{\"name\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP47243.2019.8965957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8965957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

行人属性识别在视频监控相关任务中非常重要,它可以为其他任务(如人员再识别和行人检索)提供帮助。在本文中,我们观察到现有的方法从多标签分类的角度来解决这个问题,而没有考虑空间位置约束,这意味着属性倾向于在某些身体部位被识别。在此基础上,我们提出了一种新的部分引导网络(P-Net),该网络引导改进的卷积特征映射来捕获不同身体部位相关属性的不同位置信息。部分引导注意模块采用像素级分类生成注意图,注意图可以解释为每个像素属于6个预定义身体部位的概率。实验结果表明,与目前的技术相比,该网络具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Part-guided Network for Pedestrian Attribute Recognition
Pedestrian attribute recognition, which can benefit other tasks such as person re-identification and pedestrian retrieval, is very important in video surveillance related tasks. In this paper, we observe that the existing methods tackle this problem from the perspective of multi-label classification without considering the spatial location constraints, which means that the attributes tend to be recognized at certain body parts. Based on that, we propose a novel Part-guided Network (P-Net), which guides the refined convolutional feature maps to capture different location information for the attributes related to different body parts. The part-guided attention module employs the pix-level classification to produce attention maps which can be interpreted as the probability of each pixel belonging to the 6 pre-defined body parts. Experimental results demonstrate that the proposed network gives superior performances compared to the state-of-the-art techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信