基于fft的Von Karman相位屏中低频分量补偿的亚谐波与泽尼克多项式方法的性能比较

Ling Zhu, Yan Li, D. Zheng, Jian Wu
{"title":"基于fft的Von Karman相位屏中低频分量补偿的亚谐波与泽尼克多项式方法的性能比较","authors":"Ling Zhu, Yan Li, D. Zheng, Jian Wu","doi":"10.1109/WCSP.2015.7341032","DOIUrl":null,"url":null,"abstract":"We compensate the phase screens generated by the Fourier Transform method based on Kolmogorov and Von Karman spectrum models with subharmonic method and Zernike polynomials. Then we present the performance comparison of these two compensation methods. The results show that in Kolmogorov spectrum model, Zernike polynomials have better compensation effect but in Von Karman spectrum model, subharmonic method can compensate the phase screens more accurately.","PeriodicalId":164776,"journal":{"name":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"87 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Performance comparison of subharnomic and Zernike polynomials method for compensation of low-frequency components in FFT-based Von Karman phase screen\",\"authors\":\"Ling Zhu, Yan Li, D. Zheng, Jian Wu\",\"doi\":\"10.1109/WCSP.2015.7341032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compensate the phase screens generated by the Fourier Transform method based on Kolmogorov and Von Karman spectrum models with subharmonic method and Zernike polynomials. Then we present the performance comparison of these two compensation methods. The results show that in Kolmogorov spectrum model, Zernike polynomials have better compensation effect but in Von Karman spectrum model, subharmonic method can compensate the phase screens more accurately.\",\"PeriodicalId\":164776,\"journal\":{\"name\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"87 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2015.7341032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2015.7341032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用次谐波方法和Zernike多项式对基于Kolmogorov和Von Karman谱模型的傅里叶变换方法产生的相位屏进行补偿。然后对这两种补偿方法的性能进行了比较。结果表明,在Kolmogorov谱模型中,Zernike多项式具有较好的补偿效果,而在Von Karman谱模型中,次谐波方法能够更精确地补偿相位屏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance comparison of subharnomic and Zernike polynomials method for compensation of low-frequency components in FFT-based Von Karman phase screen
We compensate the phase screens generated by the Fourier Transform method based on Kolmogorov and Von Karman spectrum models with subharmonic method and Zernike polynomials. Then we present the performance comparison of these two compensation methods. The results show that in Kolmogorov spectrum model, Zernike polynomials have better compensation effect but in Von Karman spectrum model, subharmonic method can compensate the phase screens more accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信