机器学习中消除偏见的交互式方法

Hao Wang, S. Mukhopadhyay, Yunyu Xiao, S. Fang
{"title":"机器学习中消除偏见的交互式方法","authors":"Hao Wang, S. Mukhopadhyay, Yunyu Xiao, S. Fang","doi":"10.1109/ICCICC53683.2021.9811333","DOIUrl":null,"url":null,"abstract":"Underrepresentation and misrepresentation of protected groups in the training data is a significant source of bias for Machine Learning (ML) algorithms, resulting in decreased confidence and trustworthiness of the generated ML models. Such bias can be mitigated by incorporating both objective as well as subjective (through human users) measures of bias, and compensating for them by means of a suitable selection algorithm over subgroups of training data. In this paper, we propose a methodology of integrating bias detection and mitigation strategies through interactive visualization of machine learning models in selected protected spaces. In this approach, a (partially generated) ML model performance is visualized and evaluated by a human user or a community of human users in terms of potential presence of bias using both objective and subjective criteria. Guided by such human feedback, the ML algorithm can implement a variety of remedial sampling strategies to mitigate the bias using an iterative human-in-the-loop approach. We also provide experimental results with a benchmark ML dataset to demonstrate that such an interactive ML approach holds considerable promise in detecting and mitigating bias in ML models.","PeriodicalId":101653,"journal":{"name":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"32 20","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Interactive Approach to Bias Mitigation in Machine Learning\",\"authors\":\"Hao Wang, S. Mukhopadhyay, Yunyu Xiao, S. Fang\",\"doi\":\"10.1109/ICCICC53683.2021.9811333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underrepresentation and misrepresentation of protected groups in the training data is a significant source of bias for Machine Learning (ML) algorithms, resulting in decreased confidence and trustworthiness of the generated ML models. Such bias can be mitigated by incorporating both objective as well as subjective (through human users) measures of bias, and compensating for them by means of a suitable selection algorithm over subgroups of training data. In this paper, we propose a methodology of integrating bias detection and mitigation strategies through interactive visualization of machine learning models in selected protected spaces. In this approach, a (partially generated) ML model performance is visualized and evaluated by a human user or a community of human users in terms of potential presence of bias using both objective and subjective criteria. Guided by such human feedback, the ML algorithm can implement a variety of remedial sampling strategies to mitigate the bias using an iterative human-in-the-loop approach. We also provide experimental results with a benchmark ML dataset to demonstrate that such an interactive ML approach holds considerable promise in detecting and mitigating bias in ML models.\",\"PeriodicalId\":101653,\"journal\":{\"name\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"32 20\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICC53683.2021.9811333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 20th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICC53683.2021.9811333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

训练数据中受保护群体的代表性不足和歪曲是机器学习(ML)算法偏差的重要来源,导致生成的ML模型的信心和可信度下降。这种偏差可以通过结合客观和主观(通过人类用户)偏差测量来减轻,并通过对训练数据子组的适当选择算法来补偿它们。在本文中,我们提出了一种方法,通过在选定的受保护空间中进行机器学习模型的交互式可视化来整合偏见检测和缓解策略。在这种方法中,(部分生成的)ML模型性能被可视化,并由人类用户或人类用户社区使用客观和主观标准根据潜在的偏见进行评估。在这种人类反馈的指导下,机器学习算法可以实现各种补救抽样策略,以使用迭代的人在循环方法来减轻偏差。我们还提供了一个基准机器学习数据集的实验结果,以证明这种交互式机器学习方法在检测和减轻机器学习模型中的偏差方面具有相当大的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Interactive Approach to Bias Mitigation in Machine Learning
Underrepresentation and misrepresentation of protected groups in the training data is a significant source of bias for Machine Learning (ML) algorithms, resulting in decreased confidence and trustworthiness of the generated ML models. Such bias can be mitigated by incorporating both objective as well as subjective (through human users) measures of bias, and compensating for them by means of a suitable selection algorithm over subgroups of training data. In this paper, we propose a methodology of integrating bias detection and mitigation strategies through interactive visualization of machine learning models in selected protected spaces. In this approach, a (partially generated) ML model performance is visualized and evaluated by a human user or a community of human users in terms of potential presence of bias using both objective and subjective criteria. Guided by such human feedback, the ML algorithm can implement a variety of remedial sampling strategies to mitigate the bias using an iterative human-in-the-loop approach. We also provide experimental results with a benchmark ML dataset to demonstrate that such an interactive ML approach holds considerable promise in detecting and mitigating bias in ML models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信