基于非线性盲源分离的单源维纳系统盲反演

Zhang Li-sun, De-shuang Huang, Chunhou Zheng, L. Shang
{"title":"基于非线性盲源分离的单源维纳系统盲反演","authors":"Zhang Li-sun, De-shuang Huang, Chunhou Zheng, L. Shang","doi":"10.1109/IJCNN.2005.1556030","DOIUrl":null,"url":null,"abstract":"In this paper, a nonlinear blind source separation system with post-nonlinear mixing; model, and an unsupervised learning algorithm for the parameters of this separating system are presented for blind inversion of Wiener system for single source. The proposed method firstly changes the deconvolution part of Wiener system into a special case of linear blind source separation (BSS). Then the nonlinear BSS system is applied to derive the source signal. The proposed nonlinear BSS method can dynamically estimate the nonlinearity of mixing model and adapt to the cumulative probability function (CPF) of sources. Finally, experimental results demonstrate that our proposed method is effective and efficient for the problems addressed.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Blind inversion of Wiener system for single source using nonlinear blind source separation\",\"authors\":\"Zhang Li-sun, De-shuang Huang, Chunhou Zheng, L. Shang\",\"doi\":\"10.1109/IJCNN.2005.1556030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a nonlinear blind source separation system with post-nonlinear mixing; model, and an unsupervised learning algorithm for the parameters of this separating system are presented for blind inversion of Wiener system for single source. The proposed method firstly changes the deconvolution part of Wiener system into a special case of linear blind source separation (BSS). Then the nonlinear BSS system is applied to derive the source signal. The proposed nonlinear BSS method can dynamically estimate the nonlinearity of mixing model and adapt to the cumulative probability function (CPF) of sources. Finally, experimental results demonstrate that our proposed method is effective and efficient for the problems addressed.\",\"PeriodicalId\":365690,\"journal\":{\"name\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2005.1556030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了一种后非线性混合的非线性盲源分离系统;模型,并提出了该分离系统参数的无监督学习算法,用于单源Wiener系统的盲反演。该方法首先将维纳系统的反卷积部分转化为线性盲源分离(BSS)的特例。然后应用非线性BSS系统推导源信号。该方法能够动态估计混合模型的非线性,适应源的累积概率函数(CPF)。最后,实验结果证明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind inversion of Wiener system for single source using nonlinear blind source separation
In this paper, a nonlinear blind source separation system with post-nonlinear mixing; model, and an unsupervised learning algorithm for the parameters of this separating system are presented for blind inversion of Wiener system for single source. The proposed method firstly changes the deconvolution part of Wiener system into a special case of linear blind source separation (BSS). Then the nonlinear BSS system is applied to derive the source signal. The proposed nonlinear BSS method can dynamically estimate the nonlinearity of mixing model and adapt to the cumulative probability function (CPF) of sources. Finally, experimental results demonstrate that our proposed method is effective and efficient for the problems addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信