L. Carassale, F. Coletti, R. Guida, Michela Marrè-Brunenghi, Elena Rizzetto
{"title":"叶尖定时测量叶片非同步振动的多通道频谱分析","authors":"L. Carassale, F. Coletti, R. Guida, Michela Marrè-Brunenghi, Elena Rizzetto","doi":"10.1115/GT2020-15512","DOIUrl":null,"url":null,"abstract":"\n The paper proposes a method for the processing of BTT data deriving from non-synchronous vibrations measured at constant rotor speed by a set of non-uniformly distributed sensors. The sampled data are interpreted as members of a vector space whose characteristics are determined by the signal itself and by sampling pattern. If the signal contains a single harmonic component, its frequency can be estimated through a method that has been named harmonic matching. On the contrary, when more than one harmonic component is present, due to a multi-modal response, a component separation processing is necessary. To this purpose, it is proposed a technique based on the Independent Component Analysis (ICA). This approach is limited to constant speed regime, but has the benefit of using statistical estimators that enable a strong resistance to noise. The method is illustrated using academic examples and is employed to study a flutter-like non-synchronous vibration of a bladed disk.","PeriodicalId":186943,"journal":{"name":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Channel Spectral Analysis of Non-Synchronous Vibrations of Bladed Disks Measured by Blade Tip Timing\",\"authors\":\"L. Carassale, F. Coletti, R. Guida, Michela Marrè-Brunenghi, Elena Rizzetto\",\"doi\":\"10.1115/GT2020-15512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper proposes a method for the processing of BTT data deriving from non-synchronous vibrations measured at constant rotor speed by a set of non-uniformly distributed sensors. The sampled data are interpreted as members of a vector space whose characteristics are determined by the signal itself and by sampling pattern. If the signal contains a single harmonic component, its frequency can be estimated through a method that has been named harmonic matching. On the contrary, when more than one harmonic component is present, due to a multi-modal response, a component separation processing is necessary. To this purpose, it is proposed a technique based on the Independent Component Analysis (ICA). This approach is limited to constant speed regime, but has the benefit of using statistical estimators that enable a strong resistance to noise. The method is illustrated using academic examples and is employed to study a flutter-like non-synchronous vibration of a bladed disk.\",\"PeriodicalId\":186943,\"journal\":{\"name\":\"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2020-15512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Structures and Dynamics: Structural Mechanics, Vibration, and Damping; Supercritical CO2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2020-15512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Channel Spectral Analysis of Non-Synchronous Vibrations of Bladed Disks Measured by Blade Tip Timing
The paper proposes a method for the processing of BTT data deriving from non-synchronous vibrations measured at constant rotor speed by a set of non-uniformly distributed sensors. The sampled data are interpreted as members of a vector space whose characteristics are determined by the signal itself and by sampling pattern. If the signal contains a single harmonic component, its frequency can be estimated through a method that has been named harmonic matching. On the contrary, when more than one harmonic component is present, due to a multi-modal response, a component separation processing is necessary. To this purpose, it is proposed a technique based on the Independent Component Analysis (ICA). This approach is limited to constant speed regime, but has the benefit of using statistical estimators that enable a strong resistance to noise. The method is illustrated using academic examples and is employed to study a flutter-like non-synchronous vibration of a bladed disk.