{"title":"南极电离层对一些强烈地磁风暴的响应","authors":"G. Mansilla","doi":"10.2174/1874282301711010016","DOIUrl":null,"url":null,"abstract":"Method: For this purpose, foF2 data from four Antarctic stations were analyzed during three intense magnetic storms occurred in high solar activity (years 2002 and 2003). In general, negative storm effects irrespective of the local time were observed during the first part of the storms (main phase). Negative effects were also observed more often than positive effects during the first part of the recovery phase, which seems to indicate almost no longitudinal dependence in this stage of the storm.","PeriodicalId":122982,"journal":{"name":"The Open Atmospheric Science Journal","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Response of the Antarctic Ionosphere to Some Intense Geomagnetic Storms\",\"authors\":\"G. Mansilla\",\"doi\":\"10.2174/1874282301711010016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Method: For this purpose, foF2 data from four Antarctic stations were analyzed during three intense magnetic storms occurred in high solar activity (years 2002 and 2003). In general, negative storm effects irrespective of the local time were observed during the first part of the storms (main phase). Negative effects were also observed more often than positive effects during the first part of the recovery phase, which seems to indicate almost no longitudinal dependence in this stage of the storm.\",\"PeriodicalId\":122982,\"journal\":{\"name\":\"The Open Atmospheric Science Journal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Atmospheric Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874282301711010016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Atmospheric Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874282301711010016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response of the Antarctic Ionosphere to Some Intense Geomagnetic Storms
Method: For this purpose, foF2 data from four Antarctic stations were analyzed during three intense magnetic storms occurred in high solar activity (years 2002 and 2003). In general, negative storm effects irrespective of the local time were observed during the first part of the storms (main phase). Negative effects were also observed more often than positive effects during the first part of the recovery phase, which seems to indicate almost no longitudinal dependence in this stage of the storm.