机器学习/深度学习的混合,以增强教师主导的在线舞蹈教育

Catherine Hung
{"title":"机器学习/深度学习的混合,以增强教师主导的在线舞蹈教育","authors":"Catherine Hung","doi":"10.5121/csit.2023.130403","DOIUrl":null,"url":null,"abstract":"For online dancers, learning a dance move properly without the feedback of a live instructor can be challenging because it is difficult to determine whether a move is done correctly. The lack of proper guidance can result in doing a move incorrectly, causing injury. In this work – we explore the use of a hybrid Deep Learning/Machine Learning approach to classify dance moves as structurally correct or incorrect. Given a video clip of the dancer doing a move, such as the grand plie, the algorithm should detect the correctness of the movement. To capture the overall movement, we proposed various methods to process data, starting with deep learning techniques to convert video frames into landmarks. Next, we investigate several approaches to combining landmarks from multiple frames and training machine learning algorithms on the dataset. The distinction between correct and incorrect grand plies achieved accuracies of over 98%.","PeriodicalId":159989,"journal":{"name":"Computer Networks & Communications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Machine Learning/Deep Learning Hybrid for Augmenting Teacher-LED Online Dance Education\",\"authors\":\"Catherine Hung\",\"doi\":\"10.5121/csit.2023.130403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For online dancers, learning a dance move properly without the feedback of a live instructor can be challenging because it is difficult to determine whether a move is done correctly. The lack of proper guidance can result in doing a move incorrectly, causing injury. In this work – we explore the use of a hybrid Deep Learning/Machine Learning approach to classify dance moves as structurally correct or incorrect. Given a video clip of the dancer doing a move, such as the grand plie, the algorithm should detect the correctness of the movement. To capture the overall movement, we proposed various methods to process data, starting with deep learning techniques to convert video frames into landmarks. Next, we investigate several approaches to combining landmarks from multiple frames and training machine learning algorithms on the dataset. The distinction between correct and incorrect grand plies achieved accuracies of over 98%.\",\"PeriodicalId\":159989,\"journal\":{\"name\":\"Computer Networks & Communications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks & Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2023.130403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks & Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.130403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于在线舞者来说,如果没有现场教练的反馈,正确地学习一个舞蹈动作可能是具有挑战性的,因为很难确定一个动作是否正确完成。缺乏适当的指导会导致动作不正确,造成伤害。在这项工作中,我们探索了使用混合深度学习/机器学习方法来将舞蹈动作分类为结构正确或不正确。给定舞者做动作的视频片段,比如大俯卧撑,算法应该检测动作的正确性。为了捕捉整体运动,我们提出了各种处理数据的方法,从深度学习技术开始,将视频帧转换为地标。接下来,我们研究了几种结合多帧标记和在数据集上训练机器学习算法的方法。正确和不正确的大策略之间的区别达到了98%以上的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning/Deep Learning Hybrid for Augmenting Teacher-LED Online Dance Education
For online dancers, learning a dance move properly without the feedback of a live instructor can be challenging because it is difficult to determine whether a move is done correctly. The lack of proper guidance can result in doing a move incorrectly, causing injury. In this work – we explore the use of a hybrid Deep Learning/Machine Learning approach to classify dance moves as structurally correct or incorrect. Given a video clip of the dancer doing a move, such as the grand plie, the algorithm should detect the correctness of the movement. To capture the overall movement, we proposed various methods to process data, starting with deep learning techniques to convert video frames into landmarks. Next, we investigate several approaches to combining landmarks from multiple frames and training machine learning algorithms on the dataset. The distinction between correct and incorrect grand plies achieved accuracies of over 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信