G. Gankhuyag, Kuk-jin Yoon, Haeng Jinman Park, Seon Son, Kyoungwon Min
{"title":"4K图像的轻量级实时图像超分辨率网络","authors":"G. Gankhuyag, Kuk-jin Yoon, Haeng Jinman Park, Seon Son, Kyoungwon Min","doi":"10.1109/CVPRW59228.2023.00175","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution technology has become a topic of extensive research in various applications, aiming to enhance the quality and resolution of degraded images obtained from low-resolution sensors. However, most existing studies on single-image super-resolution have primarily focused on developing deep learning networks operating on high-performance graphics processing units. Therefore, this study proposes a lightweight real-time image super-resolution network for 4K images. Furthermore, we applied a reparameterization method to improve the network performance without incurring additional computational costs. The experimental results demonstrate that the proposed network achieves a PSNR of 30.15 dB and an inference time of 4.75 ms on an RTX 3090Ti device, as evaluated on the NTIRE 2023 Real-Time Super-Resolution validation scale X3 dataset. The code is available at https://github.com/Ganzooo/LRSRN.git.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Lightweight Real-Time Image Super-Resolution Network for 4K Images\",\"authors\":\"G. Gankhuyag, Kuk-jin Yoon, Haeng Jinman Park, Seon Son, Kyoungwon Min\",\"doi\":\"10.1109/CVPRW59228.2023.00175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-image super-resolution technology has become a topic of extensive research in various applications, aiming to enhance the quality and resolution of degraded images obtained from low-resolution sensors. However, most existing studies on single-image super-resolution have primarily focused on developing deep learning networks operating on high-performance graphics processing units. Therefore, this study proposes a lightweight real-time image super-resolution network for 4K images. Furthermore, we applied a reparameterization method to improve the network performance without incurring additional computational costs. The experimental results demonstrate that the proposed network achieves a PSNR of 30.15 dB and an inference time of 4.75 ms on an RTX 3090Ti device, as evaluated on the NTIRE 2023 Real-Time Super-Resolution validation scale X3 dataset. The code is available at https://github.com/Ganzooo/LRSRN.git.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lightweight Real-Time Image Super-Resolution Network for 4K Images
Single-image super-resolution technology has become a topic of extensive research in various applications, aiming to enhance the quality and resolution of degraded images obtained from low-resolution sensors. However, most existing studies on single-image super-resolution have primarily focused on developing deep learning networks operating on high-performance graphics processing units. Therefore, this study proposes a lightweight real-time image super-resolution network for 4K images. Furthermore, we applied a reparameterization method to improve the network performance without incurring additional computational costs. The experimental results demonstrate that the proposed network achieves a PSNR of 30.15 dB and an inference time of 4.75 ms on an RTX 3090Ti device, as evaluated on the NTIRE 2023 Real-Time Super-Resolution validation scale X3 dataset. The code is available at https://github.com/Ganzooo/LRSRN.git.