使用独立分量分析对I/sub DDQ/进行缺陷筛选

R. Turakhia, B. Benware, R. Madge, Fort Collins, OR Gresham, T. Shannon, Robert Daasch
{"title":"使用独立分量分析对I/sub DDQ/进行缺陷筛选","authors":"R. Turakhia, B. Benware, R. Madge, Fort Collins, OR Gresham, T. Shannon, Robert Daasch","doi":"10.1109/VTS.2005.38","DOIUrl":null,"url":null,"abstract":"An I/sub DDQ/ Statistical Post-Processing/spl trade/ (SPP) outlier screen is presented based on the computation of statistically independent sources of variation in the I/sub DDQ/ measurements. I/sub DDQ/ measurements from die passing all other tests are modeled using sources of variation extracted by independent component analysis (ICA). Outliers are separated from the sample population based on residuals computed using these sources and a nearest neighbor spatial signature. An algorithm is presented for applying the proposed technique in production. The screen is demonstrated with 0.18/spl mu/m and 0.11/spl mu/m volume data and shown to effectively identify the outliers at the 0.1 /spl mu/m technology node.","PeriodicalId":268324,"journal":{"name":"23rd IEEE VLSI Test Symposium (VTS'05)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Defect screening using independent component analysis on I/sub DDQ/\",\"authors\":\"R. Turakhia, B. Benware, R. Madge, Fort Collins, OR Gresham, T. Shannon, Robert Daasch\",\"doi\":\"10.1109/VTS.2005.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An I/sub DDQ/ Statistical Post-Processing/spl trade/ (SPP) outlier screen is presented based on the computation of statistically independent sources of variation in the I/sub DDQ/ measurements. I/sub DDQ/ measurements from die passing all other tests are modeled using sources of variation extracted by independent component analysis (ICA). Outliers are separated from the sample population based on residuals computed using these sources and a nearest neighbor spatial signature. An algorithm is presented for applying the proposed technique in production. The screen is demonstrated with 0.18/spl mu/m and 0.11/spl mu/m volume data and shown to effectively identify the outliers at the 0.1 /spl mu/m technology node.\",\"PeriodicalId\":268324,\"journal\":{\"name\":\"23rd IEEE VLSI Test Symposium (VTS'05)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"23rd IEEE VLSI Test Symposium (VTS'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTS.2005.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"23rd IEEE VLSI Test Symposium (VTS'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2005.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

基于I/sub DDQ/测量值中统计独立变异源的计算,提出了I/sub DDQ/ Statistical Post-Processing/spl trade/ (SPP)离群值筛选。通过所有其他测试的模具的I/sub DDQ/测量使用独立成分分析(ICA)提取的变异源进行建模。根据使用这些源和最近邻空间签名计算的残差,从样本总体中分离出离群值。提出了一种将该技术应用于生产的算法。该屏幕显示了0.18/spl mu/m和0.11/spl mu/m的体积数据,并显示可以有效识别0.1 /spl mu/m技术节点的异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defect screening using independent component analysis on I/sub DDQ/
An I/sub DDQ/ Statistical Post-Processing/spl trade/ (SPP) outlier screen is presented based on the computation of statistically independent sources of variation in the I/sub DDQ/ measurements. I/sub DDQ/ measurements from die passing all other tests are modeled using sources of variation extracted by independent component analysis (ICA). Outliers are separated from the sample population based on residuals computed using these sources and a nearest neighbor spatial signature. An algorithm is presented for applying the proposed technique in production. The screen is demonstrated with 0.18/spl mu/m and 0.11/spl mu/m volume data and shown to effectively identify the outliers at the 0.1 /spl mu/m technology node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信