可重构多级神经网络在工业机械监控中的应用

H. Marzi
{"title":"可重构多级神经网络在工业机械监控中的应用","authors":"H. Marzi","doi":"10.1109/SMCIA.2005.1466963","DOIUrl":null,"url":null,"abstract":"A two-stage reconfigurable neural networks (NN) is described for real-time monitoring of onset of faults in a coolant system of a CNC machine. The measured variables in the system are current and pressure signals. The steady state values of these parameters when out of healthy range, are used as stimulus for initiating a non-destructive test. This causes the closure of a flow control valve and results in the transient response of the pump outlet pressure. The transient signal is used as input to the NN which accurately identifies inception of any faults in the system. If the system is faulty, an interprocess communication system (IPC) activates the second stage of the two-stage NN which then tests the transient pattern against the known types of failure and identifies severity of the fault. The double stage design of neural network results in achieving a high accuracy of over 99 percent in fault identification and isolation.","PeriodicalId":283950,"journal":{"name":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reconfigurable multi-stage neural networks in monitoring industrial machines\",\"authors\":\"H. Marzi\",\"doi\":\"10.1109/SMCIA.2005.1466963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-stage reconfigurable neural networks (NN) is described for real-time monitoring of onset of faults in a coolant system of a CNC machine. The measured variables in the system are current and pressure signals. The steady state values of these parameters when out of healthy range, are used as stimulus for initiating a non-destructive test. This causes the closure of a flow control valve and results in the transient response of the pump outlet pressure. The transient signal is used as input to the NN which accurately identifies inception of any faults in the system. If the system is faulty, an interprocess communication system (IPC) activates the second stage of the two-stage NN which then tests the transient pattern against the known types of failure and identifies severity of the fault. The double stage design of neural network results in achieving a high accuracy of over 99 percent in fault identification and isolation.\",\"PeriodicalId\":283950,\"journal\":{\"name\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMCIA.2005.1466963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2005 IEEE Midnight-Summer Workshop on Soft Computing in Industrial Applications, 2005. SMCia/05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMCIA.2005.1466963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种两阶段可重构神经网络(NN),用于数控机床冷却液系统故障的实时监测。系统中被测变量为电流和压力信号。当这些参数的稳态值超出健康范围时,用作启动非破坏性测试的刺激。这导致流量控制阀关闭,并导致泵出口压力的瞬态响应。暂态信号被用作神经网络的输入,该神经网络可以准确地识别系统中任何故障的开始。如果系统出现故障,进程间通信系统(IPC)激活两阶段神经网络的第二阶段,然后针对已知类型的故障测试瞬态模式并识别故障的严重程度。神经网络的双级设计使得故障识别和隔离的准确率达到99%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconfigurable multi-stage neural networks in monitoring industrial machines
A two-stage reconfigurable neural networks (NN) is described for real-time monitoring of onset of faults in a coolant system of a CNC machine. The measured variables in the system are current and pressure signals. The steady state values of these parameters when out of healthy range, are used as stimulus for initiating a non-destructive test. This causes the closure of a flow control valve and results in the transient response of the pump outlet pressure. The transient signal is used as input to the NN which accurately identifies inception of any faults in the system. If the system is faulty, an interprocess communication system (IPC) activates the second stage of the two-stage NN which then tests the transient pattern against the known types of failure and identifies severity of the fault. The double stage design of neural network results in achieving a high accuracy of over 99 percent in fault identification and isolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信