用希尔伯特变换将相量方程转置为瞬时值方程

O. Muntean
{"title":"用希尔伯特变换将相量方程转置为瞬时值方程","authors":"O. Muntean","doi":"10.1109/UPEC.2014.6934825","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to electrical circuits using Hilbert transform. By applying Hilbert transform to linear circuit equations under sinusoidal form, (-π/2) phase shifting occurs. This method can be extended to complex form circuits analysis. Applications refer strictly to sampled signals, discrete signals. The input signal is a signal under the harmonic form. An application that determines the analysis of two RLC circuits - series respectively series - parallel - powered by a constant sinusoidal current is developed.","PeriodicalId":414838,"journal":{"name":"2014 49th International Universities Power Engineering Conference (UPEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transposing phasor equation into instantaneous values equations using Hilbert transform\",\"authors\":\"O. Muntean\",\"doi\":\"10.1109/UPEC.2014.6934825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to electrical circuits using Hilbert transform. By applying Hilbert transform to linear circuit equations under sinusoidal form, (-π/2) phase shifting occurs. This method can be extended to complex form circuits analysis. Applications refer strictly to sampled signals, discrete signals. The input signal is a signal under the harmonic form. An application that determines the analysis of two RLC circuits - series respectively series - parallel - powered by a constant sinusoidal current is developed.\",\"PeriodicalId\":414838,\"journal\":{\"name\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 49th International Universities Power Engineering Conference (UPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2014.6934825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 49th International Universities Power Engineering Conference (UPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2014.6934825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用希尔伯特变换求解电路的方法。通过对正弦形式的线性电路方程应用希尔伯特变换,发生(-π/2)相移。该方法可推广到复杂形式电路的分析。应用严格地指采样信号,离散信号。输入信号是谐波形式下的信号。开发了一个应用程序,用于确定两个RLC电路的分析-串联-并联-分别由恒定正弦电流供电。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transposing phasor equation into instantaneous values equations using Hilbert transform
This paper presents an approach to electrical circuits using Hilbert transform. By applying Hilbert transform to linear circuit equations under sinusoidal form, (-π/2) phase shifting occurs. This method can be extended to complex form circuits analysis. Applications refer strictly to sampled signals, discrete signals. The input signal is a signal under the harmonic form. An application that determines the analysis of two RLC circuits - series respectively series - parallel - powered by a constant sinusoidal current is developed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信