狄利克雷l函数的计算方法

Brahim Mittou, Abdallah Derbal
{"title":"狄利克雷l函数的计算方法","authors":"Brahim Mittou, Abdallah Derbal","doi":"10.20948/mathmontis-2022-54-5","DOIUrl":null,"url":null,"abstract":"Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for calculating Dirichlet L-functions\",\"authors\":\"Brahim Mittou, Abdallah Derbal\",\"doi\":\"10.20948/mathmontis-2022-54-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2022-54-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-54-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用广义伯努利数给出了与原始狄利克雷特征χ相关的L(s, χ)的渐近公式。在本文中,基于上述渐近公式,我们描述了一种计算Dirichlet l -函数的方法,该方法可用于验证高度T > 0的广义黎曼假设。我们的方法是对Davies和Haselgrove提出的方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Method for calculating Dirichlet L-functions
Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信