{"title":"狄利克雷l函数的计算方法","authors":"Brahim Mittou, Abdallah Derbal","doi":"10.20948/mathmontis-2022-54-5","DOIUrl":null,"url":null,"abstract":"Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for calculating Dirichlet L-functions\",\"authors\":\"Brahim Mittou, Abdallah Derbal\",\"doi\":\"10.20948/mathmontis-2022-54-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2022-54-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-54-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文利用广义伯努利数给出了与原始狄利克雷特征χ相关的L(s, χ)的渐近公式。在本文中,基于上述渐近公式,我们描述了一种计算Dirichlet l -函数的方法,该方法可用于验证高度T > 0的广义黎曼假设。我们的方法是对Davies和Haselgrove提出的方法的改进。
Recently, the authors gave asymptotic formulas for L(s, χ), which associated with a primitive Dirichlet character χ, in terms of the generalized Bernoulli numbers. In this paper, based on the aforementioned asymptotic formulas we describe a method for calculating Dirichlet L-functions that can be used to validate the generalized Riemann hypothesis up to a height T > 0. Our method is a refinement of the one presented by Davies and Haselgrove.