{"title":"大数据集的快速近似核k-均值聚类方法","authors":"T. Sarma, P. Viswanath, B. Reddy","doi":"10.1109/RAICS.2011.6069372","DOIUrl":null,"url":null,"abstract":"In unsupervised classification, kernel k-means clustering method has been shown to perform better than conventional k-means clustering method in identifying non-isotropic clusters in a data set. The space and time requirements of this method are O(n2), where n is the data set size. The paper proposes a two stage hybrid approach to speed-up the kernel k-means clustering method. In the first stage, the data set is divided in to a number of group-lets by employing a fast clustering method called leaders clustering method. Each group-let is represented by a prototype called its leader. The set of leaders, which depends on a threshold parameter, can be derived in O(n) time. The paper presents a modification to the leaders clustering method where group-lets are found in the kernel space (not in the input space), but are represented by leaders in the input space. In the second stage, kernel k-means clustering method is applied with the set of leaders to derive a partition of the set of leaders. Finally, each leader is replaced by its group to get a partition of the data set. The proposed method has time complexity of O(n+p2), where p is the leaders set size. Its space complexity is also O(n+p2). The proposed method can be easily implemented. Experimental results shows that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means clustering method.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"A fast approximate kernel k-means clustering method for large data sets\",\"authors\":\"T. Sarma, P. Viswanath, B. Reddy\",\"doi\":\"10.1109/RAICS.2011.6069372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In unsupervised classification, kernel k-means clustering method has been shown to perform better than conventional k-means clustering method in identifying non-isotropic clusters in a data set. The space and time requirements of this method are O(n2), where n is the data set size. The paper proposes a two stage hybrid approach to speed-up the kernel k-means clustering method. In the first stage, the data set is divided in to a number of group-lets by employing a fast clustering method called leaders clustering method. Each group-let is represented by a prototype called its leader. The set of leaders, which depends on a threshold parameter, can be derived in O(n) time. The paper presents a modification to the leaders clustering method where group-lets are found in the kernel space (not in the input space), but are represented by leaders in the input space. In the second stage, kernel k-means clustering method is applied with the set of leaders to derive a partition of the set of leaders. Finally, each leader is replaced by its group to get a partition of the data set. The proposed method has time complexity of O(n+p2), where p is the leaders set size. Its space complexity is also O(n+p2). The proposed method can be easily implemented. Experimental results shows that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means clustering method.\",\"PeriodicalId\":394515,\"journal\":{\"name\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Recent Advances in Intelligent Computational Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAICS.2011.6069372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast approximate kernel k-means clustering method for large data sets
In unsupervised classification, kernel k-means clustering method has been shown to perform better than conventional k-means clustering method in identifying non-isotropic clusters in a data set. The space and time requirements of this method are O(n2), where n is the data set size. The paper proposes a two stage hybrid approach to speed-up the kernel k-means clustering method. In the first stage, the data set is divided in to a number of group-lets by employing a fast clustering method called leaders clustering method. Each group-let is represented by a prototype called its leader. The set of leaders, which depends on a threshold parameter, can be derived in O(n) time. The paper presents a modification to the leaders clustering method where group-lets are found in the kernel space (not in the input space), but are represented by leaders in the input space. In the second stage, kernel k-means clustering method is applied with the set of leaders to derive a partition of the set of leaders. Finally, each leader is replaced by its group to get a partition of the data set. The proposed method has time complexity of O(n+p2), where p is the leaders set size. Its space complexity is also O(n+p2). The proposed method can be easily implemented. Experimental results shows that, with a small loss of quality, the proposed method can significantly reduce the time taken than the conventional kernel k-means clustering method.