{"title":"Jerrum-Sinclair链的马尔可夫耦合与电导","authors":"V. S. A. Kumar, R. Hariharan","doi":"10.1109/SFFCS.1999.814596","DOIUrl":null,"url":null,"abstract":"We show that no Markovian coupling argument can prove rapid mixing of the Jerrum-Sinclair Markov chain for sampling almost uniformly from the set of perfect and near perfect matchings of a given graph. In particular, we show that there exists a bipartite graph G such that any Markovian coupling argument on the Jerrum-Sinclair Markov chain for G must necessarily take time exponential in the number of vertices in G. This holds even when the coupling argument is time-variant, i.e., the transition probabilities used by the coupling process depend upon the history of the process. In contrast, the above Markov chain on G has been shown to mix in polynomial time using conductance arguments.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Markovian coupling vs. conductance for the Jerrum-Sinclair chain\",\"authors\":\"V. S. A. Kumar, R. Hariharan\",\"doi\":\"10.1109/SFFCS.1999.814596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that no Markovian coupling argument can prove rapid mixing of the Jerrum-Sinclair Markov chain for sampling almost uniformly from the set of perfect and near perfect matchings of a given graph. In particular, we show that there exists a bipartite graph G such that any Markovian coupling argument on the Jerrum-Sinclair Markov chain for G must necessarily take time exponential in the number of vertices in G. This holds even when the coupling argument is time-variant, i.e., the transition probabilities used by the coupling process depend upon the history of the process. In contrast, the above Markov chain on G has been shown to mix in polynomial time using conductance arguments.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Markovian coupling vs. conductance for the Jerrum-Sinclair chain
We show that no Markovian coupling argument can prove rapid mixing of the Jerrum-Sinclair Markov chain for sampling almost uniformly from the set of perfect and near perfect matchings of a given graph. In particular, we show that there exists a bipartite graph G such that any Markovian coupling argument on the Jerrum-Sinclair Markov chain for G must necessarily take time exponential in the number of vertices in G. This holds even when the coupling argument is time-variant, i.e., the transition probabilities used by the coupling process depend upon the history of the process. In contrast, the above Markov chain on G has been shown to mix in polynomial time using conductance arguments.