{"title":"符号-数值混合算法随机化的概率分析","authors":"E. Kaltofen, Zhengfeng Yang, L. Zhi","doi":"10.1145/1277500.1277503","DOIUrl":null,"url":null,"abstract":"Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.\n Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms\",\"authors\":\"E. Kaltofen, Zhengfeng Yang, L. Zhi\",\"doi\":\"10.1145/1277500.1277503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.\\n Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1277500.1277503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1277500.1277503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On probabilistic analysis of randomization in hybrid symbolic-numeric algorithms
Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.
Algebraic randomization techniques can be applied to hybrid symbolic-numeric algorithms. Here we consider the problem of interpolating a sparse rational function from noisy values. We develop a new hybrid algorithm based on Zippel's original sparse polynomial interpolation technique. We show experimentally that our algorithm can handle sparse polynomials with large degrees. We also give a (partial) mathematical justification why the Zippel's algebraic randomization technique can be used with our approximate data: the randomly generated non-zero values are expected to be bounded away from zero. We show that the random Fourier-like matrices arising in our algorithm, have the desired rank property in the exact case, and appear usable numerically.