潜在狄利克雷条件朴素贝叶斯模型

A. Banerjee, Hanhuai Shan
{"title":"潜在狄利克雷条件朴素贝叶斯模型","authors":"A. Banerjee, Hanhuai Shan","doi":"10.1109/ICDM.2007.55","DOIUrl":null,"url":null,"abstract":"In spite of the popularity of probabilistic mixture models for latent structure discovery from data, mixture models do not have a natural mechanism for handling sparsity, where each data point only has a few non-zero observations. In this paper, we introduce conditional naive-Bayes (CNB) models, which generalize naive-Bayes mixture models to naturally handle sparsity by conditioning the model on observed features. Further, we present latent Dirichlet conditional naive-Bayes (LD-CNB) models, which constitute a family of powerful hierarchical Bayesian models for latent structure discovery from sparse data. The proposed family of models are quite general and can work with arbitrary regular exponential family conditional distributions. We present a variational inference based EM algorithm for learning along with special case analyses for Gaussian and discrete distributions. The efficacy of the proposed models are demonstrated by extensive experiments on a wide variety of different datasets.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Latent Dirichlet Conditional Naive-Bayes Models\",\"authors\":\"A. Banerjee, Hanhuai Shan\",\"doi\":\"10.1109/ICDM.2007.55\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In spite of the popularity of probabilistic mixture models for latent structure discovery from data, mixture models do not have a natural mechanism for handling sparsity, where each data point only has a few non-zero observations. In this paper, we introduce conditional naive-Bayes (CNB) models, which generalize naive-Bayes mixture models to naturally handle sparsity by conditioning the model on observed features. Further, we present latent Dirichlet conditional naive-Bayes (LD-CNB) models, which constitute a family of powerful hierarchical Bayesian models for latent structure discovery from sparse data. The proposed family of models are quite general and can work with arbitrary regular exponential family conditional distributions. We present a variational inference based EM algorithm for learning along with special case analyses for Gaussian and discrete distributions. The efficacy of the proposed models are demonstrated by extensive experiments on a wide variety of different datasets.\",\"PeriodicalId\":233758,\"journal\":{\"name\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seventh IEEE International Conference on Data Mining (ICDM 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2007.55\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

尽管从数据中发现潜在结构的概率混合模型很受欢迎,但混合模型没有处理稀疏性的自然机制,其中每个数据点只有少数非零观测值。本文引入了条件朴素贝叶斯(CNB)模型,它将朴素贝叶斯混合模型推广到通过对观测特征进行调节来自然处理稀疏性的模型。此外,我们提出了潜在的狄利克雷条件朴素贝叶斯(LD-CNB)模型,它构成了一个强大的层次贝叶斯模型家族,用于从稀疏数据中发现潜在结构。所提出的模型族具有相当的通用性,可以处理任意正则指数族条件分布。我们提出了一种基于变分推理的EM学习算法,并对高斯分布和离散分布的特殊情况进行了分析。在各种不同的数据集上进行了大量的实验,证明了所提出模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latent Dirichlet Conditional Naive-Bayes Models
In spite of the popularity of probabilistic mixture models for latent structure discovery from data, mixture models do not have a natural mechanism for handling sparsity, where each data point only has a few non-zero observations. In this paper, we introduce conditional naive-Bayes (CNB) models, which generalize naive-Bayes mixture models to naturally handle sparsity by conditioning the model on observed features. Further, we present latent Dirichlet conditional naive-Bayes (LD-CNB) models, which constitute a family of powerful hierarchical Bayesian models for latent structure discovery from sparse data. The proposed family of models are quite general and can work with arbitrary regular exponential family conditional distributions. We present a variational inference based EM algorithm for learning along with special case analyses for Gaussian and discrete distributions. The efficacy of the proposed models are demonstrated by extensive experiments on a wide variety of different datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信