L. B. Paet, S. Santra, Mickaël Laîné, Kazuya Yoshida
{"title":"维护月球探测任务中多月球车网络的连通性","authors":"L. B. Paet, S. Santra, Mickaël Laîné, Kazuya Yoshida","doi":"10.1109/CASE49439.2021.9551434","DOIUrl":null,"url":null,"abstract":"This work focuses on the wireless connectivity of multi-agent lunar robotic systems and how it can be preserved during large-scale lunar exploration missions. In particular, we consider in this work the connectivity of systems composed of a single lunar module and several micro-rovers performing coordinated area coverage exploration tasks. To this end, we adopted a deterministic model for lunar radio propagation to predict the status of point-to-point communication links for agents operating on the moon. We then used this information to build a communication graph for the lunar micro-rover network. The Fiedler value, a metric derived from algebraic graph theory, was then utilized for evaluating the system's evolving network connectivity as the micro-rovers explore finite regions on the lunar surface. Simulations involving a network consisting of a single fixed lunar module and three mobile micro-rovers were performed to illustrate how the rovers' basic mobility can cause disruptions in network connectivity. Results of the simulations show that the overall connectivity of lunar multi-rover networks can be maintained by imposing constraints on the rovers' motion.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions\",\"authors\":\"L. B. Paet, S. Santra, Mickaël Laîné, Kazuya Yoshida\",\"doi\":\"10.1109/CASE49439.2021.9551434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the wireless connectivity of multi-agent lunar robotic systems and how it can be preserved during large-scale lunar exploration missions. In particular, we consider in this work the connectivity of systems composed of a single lunar module and several micro-rovers performing coordinated area coverage exploration tasks. To this end, we adopted a deterministic model for lunar radio propagation to predict the status of point-to-point communication links for agents operating on the moon. We then used this information to build a communication graph for the lunar micro-rover network. The Fiedler value, a metric derived from algebraic graph theory, was then utilized for evaluating the system's evolving network connectivity as the micro-rovers explore finite regions on the lunar surface. Simulations involving a network consisting of a single fixed lunar module and three mobile micro-rovers were performed to illustrate how the rovers' basic mobility can cause disruptions in network connectivity. Results of the simulations show that the overall connectivity of lunar multi-rover networks can be maintained by imposing constraints on the rovers' motion.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maintaining Connectivity in Multi-Rover Networks for Lunar Exploration Missions
This work focuses on the wireless connectivity of multi-agent lunar robotic systems and how it can be preserved during large-scale lunar exploration missions. In particular, we consider in this work the connectivity of systems composed of a single lunar module and several micro-rovers performing coordinated area coverage exploration tasks. To this end, we adopted a deterministic model for lunar radio propagation to predict the status of point-to-point communication links for agents operating on the moon. We then used this information to build a communication graph for the lunar micro-rover network. The Fiedler value, a metric derived from algebraic graph theory, was then utilized for evaluating the system's evolving network connectivity as the micro-rovers explore finite regions on the lunar surface. Simulations involving a network consisting of a single fixed lunar module and three mobile micro-rovers were performed to illustrate how the rovers' basic mobility can cause disruptions in network connectivity. Results of the simulations show that the overall connectivity of lunar multi-rover networks can be maintained by imposing constraints on the rovers' motion.