Ascharya Soni, Anuraag Khare, P. S. Darshan Balaji, Sachin Verma, K. P. Asha Rani, S. Gowrishankar
{"title":"使用深度学习和增强现实的害虫识别和控制","authors":"Ascharya Soni, Anuraag Khare, P. S. Darshan Balaji, Sachin Verma, K. P. Asha Rani, S. Gowrishankar","doi":"10.1109/ICECAA55415.2022.9936053","DOIUrl":null,"url":null,"abstract":"It is crucial to comprehend how insect pest populations affect the subsequent yield or harvest since the ultimate goal of agriculture is to provide a sustained economic production of crop products. Using pesticides is the simplest technique to manage the pest infestation. However, using pesticides improperly or in excess can harm both people and animals as well as the plants. Machine learning algorithms and image processing techniques are widely used in agricultural research, and they have significant potential, particularly in plant protection, which ultimately leads to crop management. This paper highlights the detection of pests and their control measures. A smartphone camera will capture photographs of the pests through a mobile app built using the Flutter framework. The images are then analyzed in the app using various transfer learning based models for available pest identification kaggle dataset. The flutter framework offers the ability to monitor targets in real-time on a mobile device and aids in visualizing the detected pest by integrating augmented reality on to the app.","PeriodicalId":273850,"journal":{"name":"2022 International Conference on Edge Computing and Applications (ICECAA)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pest Identification and Control using Deep Learning and Augmented Reality\",\"authors\":\"Ascharya Soni, Anuraag Khare, P. S. Darshan Balaji, Sachin Verma, K. P. Asha Rani, S. Gowrishankar\",\"doi\":\"10.1109/ICECAA55415.2022.9936053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is crucial to comprehend how insect pest populations affect the subsequent yield or harvest since the ultimate goal of agriculture is to provide a sustained economic production of crop products. Using pesticides is the simplest technique to manage the pest infestation. However, using pesticides improperly or in excess can harm both people and animals as well as the plants. Machine learning algorithms and image processing techniques are widely used in agricultural research, and they have significant potential, particularly in plant protection, which ultimately leads to crop management. This paper highlights the detection of pests and their control measures. A smartphone camera will capture photographs of the pests through a mobile app built using the Flutter framework. The images are then analyzed in the app using various transfer learning based models for available pest identification kaggle dataset. The flutter framework offers the ability to monitor targets in real-time on a mobile device and aids in visualizing the detected pest by integrating augmented reality on to the app.\",\"PeriodicalId\":273850,\"journal\":{\"name\":\"2022 International Conference on Edge Computing and Applications (ICECAA)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Edge Computing and Applications (ICECAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECAA55415.2022.9936053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Edge Computing and Applications (ICECAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECAA55415.2022.9936053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pest Identification and Control using Deep Learning and Augmented Reality
It is crucial to comprehend how insect pest populations affect the subsequent yield or harvest since the ultimate goal of agriculture is to provide a sustained economic production of crop products. Using pesticides is the simplest technique to manage the pest infestation. However, using pesticides improperly or in excess can harm both people and animals as well as the plants. Machine learning algorithms and image processing techniques are widely used in agricultural research, and they have significant potential, particularly in plant protection, which ultimately leads to crop management. This paper highlights the detection of pests and their control measures. A smartphone camera will capture photographs of the pests through a mobile app built using the Flutter framework. The images are then analyzed in the app using various transfer learning based models for available pest identification kaggle dataset. The flutter framework offers the ability to monitor targets in real-time on a mobile device and aids in visualizing the detected pest by integrating augmented reality on to the app.