{"title":"三维应力作用下纤维复合材料层的破坏","authors":"S. Deteresa","doi":"10.1115/imece1999-0898","DOIUrl":null,"url":null,"abstract":"\n The efficient use of thick-section fiber composites requires a proven three-dimensional failure model. Numerous failure criteria have been proposed, but the lack of critical experimental results makes it difficult to assess the accuracy of these models. It is shown that the various predictions for failure of a lamina due to the simple state of uniaxial stress plus superposed hydrostatic pressure are disparate. These differences are sufficient to allow evaluation of failure criteria using data that has the normal scatter found for composite materials. A high-pressure test system for fiber composites is described and results for the effects of pressure on the transverse and longitudinal compression strengths of a carbon fiber/epoxy lamina are discussed. Results are compared with a few representative failure models.","PeriodicalId":136673,"journal":{"name":"Thick Composites for Load Bearing Structures","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Failure of a Fiber Composite Lamina Under Three-Dimensional Stresses\",\"authors\":\"S. Deteresa\",\"doi\":\"10.1115/imece1999-0898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The efficient use of thick-section fiber composites requires a proven three-dimensional failure model. Numerous failure criteria have been proposed, but the lack of critical experimental results makes it difficult to assess the accuracy of these models. It is shown that the various predictions for failure of a lamina due to the simple state of uniaxial stress plus superposed hydrostatic pressure are disparate. These differences are sufficient to allow evaluation of failure criteria using data that has the normal scatter found for composite materials. A high-pressure test system for fiber composites is described and results for the effects of pressure on the transverse and longitudinal compression strengths of a carbon fiber/epoxy lamina are discussed. Results are compared with a few representative failure models.\",\"PeriodicalId\":136673,\"journal\":{\"name\":\"Thick Composites for Load Bearing Structures\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thick Composites for Load Bearing Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece1999-0898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thick Composites for Load Bearing Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1999-0898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Failure of a Fiber Composite Lamina Under Three-Dimensional Stresses
The efficient use of thick-section fiber composites requires a proven three-dimensional failure model. Numerous failure criteria have been proposed, but the lack of critical experimental results makes it difficult to assess the accuracy of these models. It is shown that the various predictions for failure of a lamina due to the simple state of uniaxial stress plus superposed hydrostatic pressure are disparate. These differences are sufficient to allow evaluation of failure criteria using data that has the normal scatter found for composite materials. A high-pressure test system for fiber composites is described and results for the effects of pressure on the transverse and longitudinal compression strengths of a carbon fiber/epoxy lamina are discussed. Results are compared with a few representative failure models.