基于线性回归和神经网络的生物过程区域模型

P. Radonja, S. Stankovic, B. Matović, D. Dražić
{"title":"基于线性回归和神经网络的生物过程区域模型","authors":"P. Radonja, S. Stankovic, B. Matović, D. Dražić","doi":"10.1109/NEUREL.2006.341209","DOIUrl":null,"url":null,"abstract":"In this paper linear regression and neural networks are used for obtaining regional models of biological processes. Regional models enable getting the most important regional characteristics without detailed measurements on all individual objects. Testing of the obtained regional model by using data samples is done. A very high correlation is obtained between real data and data computed on the basis of regional models. It is shown that application of NNs provides better regional models than those obtained by linear regression","PeriodicalId":231606,"journal":{"name":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Regional Models for Biological Processes Based on Linear Regression and Neural Networks\",\"authors\":\"P. Radonja, S. Stankovic, B. Matović, D. Dražić\",\"doi\":\"10.1109/NEUREL.2006.341209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper linear regression and neural networks are used for obtaining regional models of biological processes. Regional models enable getting the most important regional characteristics without detailed measurements on all individual objects. Testing of the obtained regional model by using data samples is done. A very high correlation is obtained between real data and data computed on the basis of regional models. It is shown that application of NNs provides better regional models than those obtained by linear regression\",\"PeriodicalId\":231606,\"journal\":{\"name\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 8th Seminar on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2006.341209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 8th Seminar on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2006.341209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文将线性回归和神经网络用于生物过程的区域模型的建立。区域模型可以获得最重要的区域特征,而无需对所有单个对象进行详细测量。利用数据样本对得到的区域模型进行了检验。实际数据与基于区域模型计算的数据具有很高的相关性。结果表明,与线性回归相比,神经网络的应用能提供更好的区域模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional Models for Biological Processes Based on Linear Regression and Neural Networks
In this paper linear regression and neural networks are used for obtaining regional models of biological processes. Regional models enable getting the most important regional characteristics without detailed measurements on all individual objects. Testing of the obtained regional model by using data samples is done. A very high correlation is obtained between real data and data computed on the basis of regional models. It is shown that application of NNs provides better regional models than those obtained by linear regression
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信