通过细粒度情绪汇集推文,揭示社交媒体中的主题趋势

Annika Marie Schoene, Geeth de Mel
{"title":"通过细粒度情绪汇集推文,揭示社交媒体中的主题趋势","authors":"Annika Marie Schoene, Geeth de Mel","doi":"10.23919/fusion43075.2019.9011265","DOIUrl":null,"url":null,"abstract":"In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media\",\"authors\":\"Annika Marie Schoene, Geeth de Mel\",\"doi\":\"10.23919/fusion43075.2019.9011265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了一种基于词典的情感分析方法,该方法被用作识别社交媒体主题中细粒度情感的注释方案。该方法基于普鲁契克情绪轮和潜狄利克雷分配(LDA)。我们首先根据八种基本情绪对tweet进行注释,然后我们进一步计算作为基本情绪乘积的八对。我们证明,与人类标注的正极性和负极性数据相比,这种基于词典的方法达到了78.53%的基础真值准确率。此外,我们研究了一种新的方法,通过利用LDA和关注与每条推文相关的细粒度情绪,来识别推特数据中的趋势话题。我们比较了社交媒体中最主要的情感作为情感文档池策略的主题,并将结果与作者-主题建模策略进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信