{"title":"通过细粒度情绪汇集推文,揭示社交媒体中的主题趋势","authors":"Annika Marie Schoene, Geeth de Mel","doi":"10.23919/fusion43075.2019.9011265","DOIUrl":null,"url":null,"abstract":"In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy.","PeriodicalId":348881,"journal":{"name":"2019 22th International Conference on Information Fusion (FUSION)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media\",\"authors\":\"Annika Marie Schoene, Geeth de Mel\",\"doi\":\"10.23919/fusion43075.2019.9011265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy.\",\"PeriodicalId\":348881,\"journal\":{\"name\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 22th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion43075.2019.9011265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 22th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion43075.2019.9011265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pooling Tweets by Fine-Grained Emotions to Uncover Topic Trends in Social Media
In this paper, we present a lexicon-based sentiment analysis method that is used as an annotation scheme for identifying fine-grained emotions in social media topics. This methodology is based on Plutchik's wheel of emotion and Latent Dirichlet Allocation (LDA). We firstly annotate a tweet based on eight basic emotions and secondly we compute further eight dyads as a product of the basic emotions. We demonstrate that this lexicon-based approach achieves up to 78.53% ground truth accuracy when compared to human annotated data that is split into positive and negative polarities. Moreover, we investigate a novel means to identify trending topics in twitter data by utilizing LDA and focusing on fine-grained emotions associated with each tweet. We compare the most dominant emotions in social media as topics from an emotion-document pooling strategy and compare the results to an author-topic modeling strategy.