基于深度神经网络的三维图像处理

T. Fujii
{"title":"基于深度神经网络的三维图像处理","authors":"T. Fujii","doi":"10.1117/12.2523171","DOIUrl":null,"url":null,"abstract":"In 3D image processing field, many researches have been conducted, such as multiview image coding and data compression, view interpolation, coded aperture based light field acquisition, and light field display signal calculation. The challenge of these technologies is that they usually require heavy computation due to the large amount of data. In this paper, we report the results of some experiments where we replace these computation with deep neural network (DNN) and convolutional neural network (CNN). In some of the cases, DNN and CNN show better performance than conventional methods both in quality and calculation speed.","PeriodicalId":350781,"journal":{"name":"Three-Dimensional Imaging, Visualization, and Display 2019","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D image processing using deep neural network\",\"authors\":\"T. Fujii\",\"doi\":\"10.1117/12.2523171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 3D image processing field, many researches have been conducted, such as multiview image coding and data compression, view interpolation, coded aperture based light field acquisition, and light field display signal calculation. The challenge of these technologies is that they usually require heavy computation due to the large amount of data. In this paper, we report the results of some experiments where we replace these computation with deep neural network (DNN) and convolutional neural network (CNN). In some of the cases, DNN and CNN show better performance than conventional methods both in quality and calculation speed.\",\"PeriodicalId\":350781,\"journal\":{\"name\":\"Three-Dimensional Imaging, Visualization, and Display 2019\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Three-Dimensional Imaging, Visualization, and Display 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2523171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Three-Dimensional Imaging, Visualization, and Display 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2523171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在三维图像处理领域进行了多视点图像编码与数据压缩、视点插值、基于编码孔径的光场采集、光场显示信号计算等方面的研究。这些技术的挑战在于,由于数据量大,它们通常需要大量的计算。在本文中,我们报告了一些用深度神经网络(DNN)和卷积神经网络(CNN)代替这些计算的实验结果。在某些情况下,DNN和CNN在质量和计算速度上都比传统方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D image processing using deep neural network
In 3D image processing field, many researches have been conducted, such as multiview image coding and data compression, view interpolation, coded aperture based light field acquisition, and light field display signal calculation. The challenge of these technologies is that they usually require heavy computation due to the large amount of data. In this paper, we report the results of some experiments where we replace these computation with deep neural network (DNN) and convolutional neural network (CNN). In some of the cases, DNN and CNN show better performance than conventional methods both in quality and calculation speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信