聚乙烯中化学杂质态的深度从第一性原理看全局

A. Huzayyin, S. Boggs, R. Ramprasad
{"title":"聚乙烯中化学杂质态的深度从第一性原理看全局","authors":"A. Huzayyin, S. Boggs, R. Ramprasad","doi":"10.1109/ICSD.2013.6619738","DOIUrl":null,"url":null,"abstract":"Computational quantum mechanics, within the frame work of density functional theory (DFT) was used to determine the depths of impurity states created by common chemical impurities in polyethylene. Depths of traps/hopping sites were between 0.1 eV and 2.4 eV and were classified into shallow traps/hopping sites, deep traps, and deeper traps. Such depths suggest that chemical impurities can play major roles in trapping and hopping processes, can explain the observed activation energy of conduction, and shape the barriers to charge injection. Thus, chemical impurities could dominate high field conduction in polyethylene. The type of impurity bonds and their lengths are correlated with the depth of impurities they create. Such correlation is linear. A procedure to determine depth of states created by an impurity, without using DFT is presented.","PeriodicalId":437475,"journal":{"name":"2013 IEEE International Conference on Solid Dielectrics (ICSD)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Depths of chemical impurity states in Polyethylene; The big picture from first principles\",\"authors\":\"A. Huzayyin, S. Boggs, R. Ramprasad\",\"doi\":\"10.1109/ICSD.2013.6619738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational quantum mechanics, within the frame work of density functional theory (DFT) was used to determine the depths of impurity states created by common chemical impurities in polyethylene. Depths of traps/hopping sites were between 0.1 eV and 2.4 eV and were classified into shallow traps/hopping sites, deep traps, and deeper traps. Such depths suggest that chemical impurities can play major roles in trapping and hopping processes, can explain the observed activation energy of conduction, and shape the barriers to charge injection. Thus, chemical impurities could dominate high field conduction in polyethylene. The type of impurity bonds and their lengths are correlated with the depth of impurities they create. Such correlation is linear. A procedure to determine depth of states created by an impurity, without using DFT is presented.\",\"PeriodicalId\":437475,\"journal\":{\"name\":\"2013 IEEE International Conference on Solid Dielectrics (ICSD)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Solid Dielectrics (ICSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSD.2013.6619738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Solid Dielectrics (ICSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSD.2013.6619738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在密度泛函理论(DFT)的框架内,计算量子力学被用来确定聚乙烯中常见化学杂质产生的杂质态的深度。陷阱/跳跃点深度在0.1 ~ 2.4 eV之间,分为浅陷阱/跳跃点、深陷阱和深陷阱。这样的深度表明,化学杂质可以在捕获和跳跃过程中发挥主要作用,可以解释观察到的传导活化能,并形成电荷注入的障碍。因此,化学杂质可能主导聚乙烯的高场导电性。杂质键的类型及其长度与它们所产生的杂质的深度有关。这种相关性是线性的。一个程序,以确定深度的状态产生的杂质,而不使用DFT提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Depths of chemical impurity states in Polyethylene; The big picture from first principles
Computational quantum mechanics, within the frame work of density functional theory (DFT) was used to determine the depths of impurity states created by common chemical impurities in polyethylene. Depths of traps/hopping sites were between 0.1 eV and 2.4 eV and were classified into shallow traps/hopping sites, deep traps, and deeper traps. Such depths suggest that chemical impurities can play major roles in trapping and hopping processes, can explain the observed activation energy of conduction, and shape the barriers to charge injection. Thus, chemical impurities could dominate high field conduction in polyethylene. The type of impurity bonds and their lengths are correlated with the depth of impurities they create. Such correlation is linear. A procedure to determine depth of states created by an impurity, without using DFT is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信