非线性滤波器的动态规划公式

Jin W. Kim, P. Mehta
{"title":"非线性滤波器的动态规划公式","authors":"Jin W. Kim, P. Mehta","doi":"10.1109/ICC54714.2021.9703115","DOIUrl":null,"url":null,"abstract":"This paper build on our recent work where we presented a dual stochastic optimal control formulation of the nonlinear filtering problem [1]. The constraint for the dual problem is a backward stochastic differential equations (BSDE). The solution is obtained via an application of the maximum principle (MP). In the present paper, a dynamic programming (DP) principle is presented for a special class of BSDE-constrained stochastic optimal control problems. The principle is applied to derive the solution of the nonlinear filtering problem.","PeriodicalId":382373,"journal":{"name":"2021 Seventh Indian Control Conference (ICC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dynamic Programming Formulation for the Nonlinear Filter\",\"authors\":\"Jin W. Kim, P. Mehta\",\"doi\":\"10.1109/ICC54714.2021.9703115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper build on our recent work where we presented a dual stochastic optimal control formulation of the nonlinear filtering problem [1]. The constraint for the dual problem is a backward stochastic differential equations (BSDE). The solution is obtained via an application of the maximum principle (MP). In the present paper, a dynamic programming (DP) principle is presented for a special class of BSDE-constrained stochastic optimal control problems. The principle is applied to derive the solution of the nonlinear filtering problem.\",\"PeriodicalId\":382373,\"journal\":{\"name\":\"2021 Seventh Indian Control Conference (ICC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Seventh Indian Control Conference (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC54714.2021.9703115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Seventh Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC54714.2021.9703115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文建立在我们最近的工作基础上,我们提出了非线性滤波问题的对偶随机最优控制公式[1]。对偶问题的约束是一个倒向随机微分方程。通过应用极大值原理(MP)得到了解。本文给出了一类特殊的bsde约束随机最优控制问题的动态规划原理。应用该原理推导了非线性滤波问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dynamic Programming Formulation for the Nonlinear Filter
This paper build on our recent work where we presented a dual stochastic optimal control formulation of the nonlinear filtering problem [1]. The constraint for the dual problem is a backward stochastic differential equations (BSDE). The solution is obtained via an application of the maximum principle (MP). In the present paper, a dynamic programming (DP) principle is presented for a special class of BSDE-constrained stochastic optimal control problems. The principle is applied to derive the solution of the nonlinear filtering problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信