{"title":"进化构象路径以模拟蛋白质结构转变","authors":"Emmanuel Sapin, K. D. Jong, Amarda Shehu","doi":"10.1145/3107411.3107498","DOIUrl":null,"url":null,"abstract":"Proteins are dynamic biomolecules. A structure-by-structure characterization of a protein's transition between two different functional structures is central to elucidating the role of dynamics in modulating protein function and designing therapeutic drugs. Characterizing transitions challenges both dry and wet laboratories. Some computational methods compute discrete representations of the energy landscape that organizes structures of a protein by their potential energies. The representations support queries for paths (series of structures) connecting start and goal structures of interest. Here we address the problem of modeling protein structural transitions under the umbrella of stochastic optimization and propose a novel evolutionary algorithm (EA). The EA evolves paths without reconstructing the energy landscape, addressing two competing optimization objectives, energetic cost and structural resolution. Rather than seek one path, the EA yields an ensemble of paths to represent a transition. Preliminary applications suggest the EA is effective while operating under a reasonable computational budget.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolving Conformation Paths to Model Protein Structural Transitions\",\"authors\":\"Emmanuel Sapin, K. D. Jong, Amarda Shehu\",\"doi\":\"10.1145/3107411.3107498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proteins are dynamic biomolecules. A structure-by-structure characterization of a protein's transition between two different functional structures is central to elucidating the role of dynamics in modulating protein function and designing therapeutic drugs. Characterizing transitions challenges both dry and wet laboratories. Some computational methods compute discrete representations of the energy landscape that organizes structures of a protein by their potential energies. The representations support queries for paths (series of structures) connecting start and goal structures of interest. Here we address the problem of modeling protein structural transitions under the umbrella of stochastic optimization and propose a novel evolutionary algorithm (EA). The EA evolves paths without reconstructing the energy landscape, addressing two competing optimization objectives, energetic cost and structural resolution. Rather than seek one path, the EA yields an ensemble of paths to represent a transition. Preliminary applications suggest the EA is effective while operating under a reasonable computational budget.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3107498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving Conformation Paths to Model Protein Structural Transitions
Proteins are dynamic biomolecules. A structure-by-structure characterization of a protein's transition between two different functional structures is central to elucidating the role of dynamics in modulating protein function and designing therapeutic drugs. Characterizing transitions challenges both dry and wet laboratories. Some computational methods compute discrete representations of the energy landscape that organizes structures of a protein by their potential energies. The representations support queries for paths (series of structures) connecting start and goal structures of interest. Here we address the problem of modeling protein structural transitions under the umbrella of stochastic optimization and propose a novel evolutionary algorithm (EA). The EA evolves paths without reconstructing the energy landscape, addressing two competing optimization objectives, energetic cost and structural resolution. Rather than seek one path, the EA yields an ensemble of paths to represent a transition. Preliminary applications suggest the EA is effective while operating under a reasonable computational budget.