Xing Chen, Dongyang Xie, Yongsheng Jiang, Na-qi Fan
{"title":"具有两个轨道的3正则有向图的弧连通性","authors":"Xing Chen, Dongyang Xie, Yongsheng Jiang, Na-qi Fan","doi":"10.1142/s0219265921420238","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a simple strongly connected digraph and let Aut[Formula: see text] be an automorphism of [Formula: see text]. For [Formula: see text], the set [Formula: see text] is called an orbit of Aut[Formula: see text]. In this paper, first, we show that if [Formula: see text] is a 2-regular strongly connected digraph with two orbits then [Formula: see text], if [Formula: see text] is a [Formula: see text]-regular strongly connected digraph with two orbits and [Formula: see text] [Formula: see text], then [Formula: see text]. Second, we prove that if [Formula: see text], then [Formula: see text]. Last, we characterize the arc atoms of 3-regular strongly connected digraphs with two orbits and [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Arc-Connectivity of 3-Regular Digraphs with Two Orbits\",\"authors\":\"Xing Chen, Dongyang Xie, Yongsheng Jiang, Na-qi Fan\",\"doi\":\"10.1142/s0219265921420238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a simple strongly connected digraph and let Aut[Formula: see text] be an automorphism of [Formula: see text]. For [Formula: see text], the set [Formula: see text] is called an orbit of Aut[Formula: see text]. In this paper, first, we show that if [Formula: see text] is a 2-regular strongly connected digraph with two orbits then [Formula: see text], if [Formula: see text] is a [Formula: see text]-regular strongly connected digraph with two orbits and [Formula: see text] [Formula: see text], then [Formula: see text]. Second, we prove that if [Formula: see text], then [Formula: see text]. Last, we characterize the arc atoms of 3-regular strongly connected digraphs with two orbits and [Formula: see text].\",\"PeriodicalId\":153590,\"journal\":{\"name\":\"J. Interconnect. Networks\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Interconnect. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219265921420238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921420238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Arc-Connectivity of 3-Regular Digraphs with Two Orbits
Let [Formula: see text] be a simple strongly connected digraph and let Aut[Formula: see text] be an automorphism of [Formula: see text]. For [Formula: see text], the set [Formula: see text] is called an orbit of Aut[Formula: see text]. In this paper, first, we show that if [Formula: see text] is a 2-regular strongly connected digraph with two orbits then [Formula: see text], if [Formula: see text] is a [Formula: see text]-regular strongly connected digraph with two orbits and [Formula: see text] [Formula: see text], then [Formula: see text]. Second, we prove that if [Formula: see text], then [Formula: see text]. Last, we characterize the arc atoms of 3-regular strongly connected digraphs with two orbits and [Formula: see text].