反树的曲率计算

D. Cushing, Shiping Liu, Florentin Münch, N. Peyerimhoff
{"title":"反树的曲率计算","authors":"D. Cushing, Shiping Liu, Florentin Münch, N. Peyerimhoff","doi":"10.1017/9781108615259.003","DOIUrl":null,"url":null,"abstract":"In this article we prove that antitrees with suitable growth properties are examples of infinite graphs exhibiting strictly positive curvature in various contexts: in the normalized and non-normalized Bakry-Emery setting as well in the Ollivier-Ricci curvature case. We also show that these graphs do not have global positive lower curvature bounds, which one would expect in view of discrete analogues of the Bonnet-Myers theorem. The proofs in the different settings require different techniques.","PeriodicalId":393578,"journal":{"name":"Analysis and Geometry on Graphs and Manifolds","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Curvature Calculations for Antitrees\",\"authors\":\"D. Cushing, Shiping Liu, Florentin Münch, N. Peyerimhoff\",\"doi\":\"10.1017/9781108615259.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we prove that antitrees with suitable growth properties are examples of infinite graphs exhibiting strictly positive curvature in various contexts: in the normalized and non-normalized Bakry-Emery setting as well in the Ollivier-Ricci curvature case. We also show that these graphs do not have global positive lower curvature bounds, which one would expect in view of discrete analogues of the Bonnet-Myers theorem. The proofs in the different settings require different techniques.\",\"PeriodicalId\":393578,\"journal\":{\"name\":\"Analysis and Geometry on Graphs and Manifolds\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry on Graphs and Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108615259.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry on Graphs and Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108615259.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们证明了具有适当生长性质的反树是在各种情况下表现出严格正曲率的无限图的例子:在归一化和非归一化Bakry-Emery环境下以及在Ollivier-Ricci曲率情况下。我们还证明了这些图不具有全局正的下曲率界,这是人们根据Bonnet-Myers定理的离散类似物所期望的。不同情况下的校样需要不同的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature Calculations for Antitrees
In this article we prove that antitrees with suitable growth properties are examples of infinite graphs exhibiting strictly positive curvature in various contexts: in the normalized and non-normalized Bakry-Emery setting as well in the Ollivier-Ricci curvature case. We also show that these graphs do not have global positive lower curvature bounds, which one would expect in view of discrete analogues of the Bonnet-Myers theorem. The proofs in the different settings require different techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信