基于局部方向分布的图像质量评价

Yue Wang, Tingting Jiang, Siwei Ma, Wen Gao
{"title":"基于局部方向分布的图像质量评价","authors":"Yue Wang, Tingting Jiang, Siwei Ma, Wen Gao","doi":"10.1109/PCS.2010.5702485","DOIUrl":null,"url":null,"abstract":"Image quality assessment (IQA) is very important for many image and video processing applications, e.g. compression, archiving, restoration and enhancement. An ideal image quality metric should achieve consistency between image distortion prediction and psychological perception of human visual system (HVS). Inspired by that HVS is quite sensitive to image local orientation features, in this paper, we propose a new structural information based image quality metric, which evaluates image distortion by computing the distance of Histograms of Oriented Gradients (HOG) descriptors. Experimental results on LIVE database show that the proposed IQA metric is competitive with state-of-the-art IQA metrics, while keeping relatively low computing complexity.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Image quality assessment based on local orientation distributions\",\"authors\":\"Yue Wang, Tingting Jiang, Siwei Ma, Wen Gao\",\"doi\":\"10.1109/PCS.2010.5702485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image quality assessment (IQA) is very important for many image and video processing applications, e.g. compression, archiving, restoration and enhancement. An ideal image quality metric should achieve consistency between image distortion prediction and psychological perception of human visual system (HVS). Inspired by that HVS is quite sensitive to image local orientation features, in this paper, we propose a new structural information based image quality metric, which evaluates image distortion by computing the distance of Histograms of Oriented Gradients (HOG) descriptors. Experimental results on LIVE database show that the proposed IQA metric is competitive with state-of-the-art IQA metrics, while keeping relatively low computing complexity.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

图像质量评估(IQA)对于许多图像和视频处理应用非常重要,例如压缩、存档、恢复和增强。一种理想的图像质量度量应该在图像失真预测和人类视觉系统(HVS)的心理感知之间达到一致性。基于HVS对图像局部方向特征非常敏感的特点,本文提出了一种基于结构信息的图像质量度量方法,通过计算方向梯度直方图(Histograms of Oriented Gradients, HOG)描述子的距离来评估图像失真。在LIVE数据库上的实验结果表明,所提出的IQA度量在保持较低的计算复杂度的同时,具有较好的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image quality assessment based on local orientation distributions
Image quality assessment (IQA) is very important for many image and video processing applications, e.g. compression, archiving, restoration and enhancement. An ideal image quality metric should achieve consistency between image distortion prediction and psychological perception of human visual system (HVS). Inspired by that HVS is quite sensitive to image local orientation features, in this paper, we propose a new structural information based image quality metric, which evaluates image distortion by computing the distance of Histograms of Oriented Gradients (HOG) descriptors. Experimental results on LIVE database show that the proposed IQA metric is competitive with state-of-the-art IQA metrics, while keeping relatively low computing complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信