Ajibade Lukuman Saheed, Abu Bakar Kamalrulnizam, Ahmed Aliyu, Tasneem Darwish
{"title":"Hadoop MapReduce框架中延迟感知的离散者缓解策略综述","authors":"Ajibade Lukuman Saheed, Abu Bakar Kamalrulnizam, Ahmed Aliyu, Tasneem Darwish","doi":"10.54480/slrm.v2i2.19","DOIUrl":null,"url":null,"abstract":"Processing huge and complex data to obtain useful information is challenging, even though several big data processing frameworks have been proposed and further enhanced. One of the prominent big data processing frameworks is MapReduce. The main concept of MapReduce framework relies on distributed and parallel processing. However, MapReduce framework is facing serious performance degradations due to the slow execution of certain tasks type called stragglers. Failing to handle stragglers causes delay and affects the overall job execution time. Meanwhile, several straggler reduction techniques have been proposed to improve the MapReduce performance. This study provides a comprehensive and qualitative review of the different existing straggler mitigation solutions. In addition, a taxonomy of the available straggler mitigation solutions is presented. Critical research issues and future research directions are identified and discussed to guide researchers and scholars","PeriodicalId":355296,"journal":{"name":"Systematic Literature Review and Meta-Analysis Journal","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latency-aware Straggler Mitigation Strategy in Hadoop MapReduce Framework: A Review\",\"authors\":\"Ajibade Lukuman Saheed, Abu Bakar Kamalrulnizam, Ahmed Aliyu, Tasneem Darwish\",\"doi\":\"10.54480/slrm.v2i2.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing huge and complex data to obtain useful information is challenging, even though several big data processing frameworks have been proposed and further enhanced. One of the prominent big data processing frameworks is MapReduce. The main concept of MapReduce framework relies on distributed and parallel processing. However, MapReduce framework is facing serious performance degradations due to the slow execution of certain tasks type called stragglers. Failing to handle stragglers causes delay and affects the overall job execution time. Meanwhile, several straggler reduction techniques have been proposed to improve the MapReduce performance. This study provides a comprehensive and qualitative review of the different existing straggler mitigation solutions. In addition, a taxonomy of the available straggler mitigation solutions is presented. Critical research issues and future research directions are identified and discussed to guide researchers and scholars\",\"PeriodicalId\":355296,\"journal\":{\"name\":\"Systematic Literature Review and Meta-Analysis Journal\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Literature Review and Meta-Analysis Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54480/slrm.v2i2.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Literature Review and Meta-Analysis Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54480/slrm.v2i2.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Latency-aware Straggler Mitigation Strategy in Hadoop MapReduce Framework: A Review
Processing huge and complex data to obtain useful information is challenging, even though several big data processing frameworks have been proposed and further enhanced. One of the prominent big data processing frameworks is MapReduce. The main concept of MapReduce framework relies on distributed and parallel processing. However, MapReduce framework is facing serious performance degradations due to the slow execution of certain tasks type called stragglers. Failing to handle stragglers causes delay and affects the overall job execution time. Meanwhile, several straggler reduction techniques have been proposed to improve the MapReduce performance. This study provides a comprehensive and qualitative review of the different existing straggler mitigation solutions. In addition, a taxonomy of the available straggler mitigation solutions is presented. Critical research issues and future research directions are identified and discussed to guide researchers and scholars