{"title":"鲁棒网络入侵检测系统的异常值检测","authors":"Rohan Desai, T. G. Venkatesh","doi":"10.1109/CAMAD55695.2022.9966883","DOIUrl":null,"url":null,"abstract":"Machine Learning Algorithms have become a crucial tool for designing Intrusion Detection Systems(IDS). The research community has identified deep learning architectures like Convolutional Neural Networks(CNN) as the go-to solution for IDS. However, these deep learning models are not immune to new outliers. We propose a Robust Network intrusion Detection system (RNIDS) model, which combines a CNN architecture followed by K Nearest Neighbors method. The proposed RNIDS model can classify different known attacks, and then predict if a new arriving traffic is an outlier with very high accuracy. We train and evaluate a CNN-based model which can classify attacks with an accuracy of 98.3% using up only 70,252 training parameters.","PeriodicalId":166029,"journal":{"name":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Network Intrusion Detection Systems for Outlier Detection\",\"authors\":\"Rohan Desai, T. G. Venkatesh\",\"doi\":\"10.1109/CAMAD55695.2022.9966883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine Learning Algorithms have become a crucial tool for designing Intrusion Detection Systems(IDS). The research community has identified deep learning architectures like Convolutional Neural Networks(CNN) as the go-to solution for IDS. However, these deep learning models are not immune to new outliers. We propose a Robust Network intrusion Detection system (RNIDS) model, which combines a CNN architecture followed by K Nearest Neighbors method. The proposed RNIDS model can classify different known attacks, and then predict if a new arriving traffic is an outlier with very high accuracy. We train and evaluate a CNN-based model which can classify attacks with an accuracy of 98.3% using up only 70,252 training parameters.\",\"PeriodicalId\":166029,\"journal\":{\"name\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAMAD55695.2022.9966883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD55695.2022.9966883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust Network Intrusion Detection Systems for Outlier Detection
Machine Learning Algorithms have become a crucial tool for designing Intrusion Detection Systems(IDS). The research community has identified deep learning architectures like Convolutional Neural Networks(CNN) as the go-to solution for IDS. However, these deep learning models are not immune to new outliers. We propose a Robust Network intrusion Detection system (RNIDS) model, which combines a CNN architecture followed by K Nearest Neighbors method. The proposed RNIDS model can classify different known attacks, and then predict if a new arriving traffic is an outlier with very high accuracy. We train and evaluate a CNN-based model which can classify attacks with an accuracy of 98.3% using up only 70,252 training parameters.