基于局部特征和不变几何约束的多视图场景匹配

M. Soysal, Aydin Alatan
{"title":"基于局部特征和不变几何约束的多视图场景匹配","authors":"M. Soysal, Aydin Alatan","doi":"10.1109/SIU.2012.6204757","DOIUrl":null,"url":null,"abstract":"A novel scene recognition method that utilizes local appearance descriptions together with geometrical invariants for multiview scene matching is presented in this paper. The rationale behind this effort is to complement the lowered discriminative capacity of local features, with invariant geometric descriptions. Presented method is evaluated by comparison with a prominent baseline method, which utilizes Random Sample Consensus (RANSAC) for robust 2D affine invariant transform estimation. Experimental results have revealed the superiority of the presented method which utilizes 3D geometric invariants over the baseline robust 2D transform estimation method, especially in typical scenes for which planarity assumption does not hold.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiview scene matching using local features and invariant geometric constraints\",\"authors\":\"M. Soysal, Aydin Alatan\",\"doi\":\"10.1109/SIU.2012.6204757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel scene recognition method that utilizes local appearance descriptions together with geometrical invariants for multiview scene matching is presented in this paper. The rationale behind this effort is to complement the lowered discriminative capacity of local features, with invariant geometric descriptions. Presented method is evaluated by comparison with a prominent baseline method, which utilizes Random Sample Consensus (RANSAC) for robust 2D affine invariant transform estimation. Experimental results have revealed the superiority of the presented method which utilizes 3D geometric invariants over the baseline robust 2D transform estimation method, especially in typical scenes for which planarity assumption does not hold.\",\"PeriodicalId\":256154,\"journal\":{\"name\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 20th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2012.6204757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种利用局部外观描述和几何不变量进行多视点场景匹配的场景识别方法。这种努力背后的基本原理是用不变的几何描述来补充局部特征较低的判别能力。通过与一种利用随机样本一致性(RANSAC)进行稳健二维仿射不变变换估计的著名基线方法进行比较,对该方法进行了评价。实验结果表明,该方法利用三维几何不变量优于基线鲁棒二维变换估计方法,特别是在不满足平面性假设的典型场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiview scene matching using local features and invariant geometric constraints
A novel scene recognition method that utilizes local appearance descriptions together with geometrical invariants for multiview scene matching is presented in this paper. The rationale behind this effort is to complement the lowered discriminative capacity of local features, with invariant geometric descriptions. Presented method is evaluated by comparison with a prominent baseline method, which utilizes Random Sample Consensus (RANSAC) for robust 2D affine invariant transform estimation. Experimental results have revealed the superiority of the presented method which utilizes 3D geometric invariants over the baseline robust 2D transform estimation method, especially in typical scenes for which planarity assumption does not hold.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信