图卷积对电动汽车电荷可用性时空预测的评价

M. Schilling, Christopher Burgahn, Rebecca Fortmann
{"title":"图卷积对电动汽车电荷可用性时空预测的评价","authors":"M. Schilling, Christopher Burgahn, Rebecca Fortmann","doi":"10.1109/SSCI50451.2021.9660162","DOIUrl":null,"url":null,"abstract":"When driving an electric vehicle (EV) it is necessary to plan recharging ahead, as the infrastructure for charging is still scarce. High quality predictions of charging availability can help avoid unnecessary searches for an available charger and provide better distribution of cars onto locations. This article analyzes EV-charge availability prediction performance for different types of information used as input for different neural network based prediction models. In the end, we present a sequence-to-sequence model for integration of such different types of information and evaluate the performance over different time horizons. In particular, we demonstrate that, on the one hand, temporal information on the history of charging interaction is important, and, on the other hand, integrating in addition spatial information from other stations increases prediction accuracy and can be leveraged into better long term predictions using graph convolutions.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"304 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability\",\"authors\":\"M. Schilling, Christopher Burgahn, Rebecca Fortmann\",\"doi\":\"10.1109/SSCI50451.2021.9660162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When driving an electric vehicle (EV) it is necessary to plan recharging ahead, as the infrastructure for charging is still scarce. High quality predictions of charging availability can help avoid unnecessary searches for an available charger and provide better distribution of cars onto locations. This article analyzes EV-charge availability prediction performance for different types of information used as input for different neural network based prediction models. In the end, we present a sequence-to-sequence model for integration of such different types of information and evaluate the performance over different time horizons. In particular, we demonstrate that, on the one hand, temporal information on the history of charging interaction is important, and, on the other hand, integrating in addition spatial information from other stations increases prediction accuracy and can be leveraged into better long term predictions using graph convolutions.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"304 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在驾驶电动汽车(EV)时,有必要提前计划充电,因为充电基础设施仍然稀缺。高质量的充电可用性预测可以帮助避免不必要的搜索可用的充电器,并提供更好的汽车分布到各个地点。本文分析了不同类型的信息作为不同神经网络预测模型的输入时电动汽车电量可用性预测的性能。最后,我们提出了一个序列到序列的模型来整合这些不同类型的信息,并在不同的时间范围内评估其性能。特别是,我们证明,一方面,充电交互历史的时间信息是重要的,另一方面,集成来自其他站点的额外空间信息可以提高预测精度,并可以利用图卷积进行更好的长期预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability
When driving an electric vehicle (EV) it is necessary to plan recharging ahead, as the infrastructure for charging is still scarce. High quality predictions of charging availability can help avoid unnecessary searches for an available charger and provide better distribution of cars onto locations. This article analyzes EV-charge availability prediction performance for different types of information used as input for different neural network based prediction models. In the end, we present a sequence-to-sequence model for integration of such different types of information and evaluate the performance over different time horizons. In particular, we demonstrate that, on the one hand, temporal information on the history of charging interaction is important, and, on the other hand, integrating in addition spatial information from other stations increases prediction accuracy and can be leveraged into better long term predictions using graph convolutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信