射频电路变异性分析的高斯过程替代模型

Thong Nguyen, J. Schutt-Ainé
{"title":"射频电路变异性分析的高斯过程替代模型","authors":"Thong Nguyen, J. Schutt-Ainé","doi":"10.1109/EDAPS50281.2020.9312886","DOIUrl":null,"url":null,"abstract":"Non-intrusive methods for studying processes involving variables changing such as design optimization, manufacture variation etc. require evaluations of the quantity of interests for a numerous times. These methods, hence, rely on an accurate surrogate model of the process under study. Gaussian Process (GP) is a well-known non-parametric modeling technique for surrogate modeling. This paper explores the effectiveness of GP to model RF applications. The analysis of a milimeter-wave bandpass filter is presented to illustrate the method.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gaussian Process surrogate model for variability analysis of RF circuits\",\"authors\":\"Thong Nguyen, J. Schutt-Ainé\",\"doi\":\"10.1109/EDAPS50281.2020.9312886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive methods for studying processes involving variables changing such as design optimization, manufacture variation etc. require evaluations of the quantity of interests for a numerous times. These methods, hence, rely on an accurate surrogate model of the process under study. Gaussian Process (GP) is a well-known non-parametric modeling technique for surrogate modeling. This paper explores the effectiveness of GP to model RF applications. The analysis of a milimeter-wave bandpass filter is presented to illustrate the method.\",\"PeriodicalId\":137699,\"journal\":{\"name\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS50281.2020.9312886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

非侵入式方法用于研究涉及变量变化的过程,如设计优化、制造变化等,需要对兴趣的数量进行多次评估。因此,这些方法依赖于所研究过程的精确替代模型。高斯过程(GP)是一种著名的用于代理建模的非参数建模技术。本文探讨了GP对射频应用建模的有效性。最后以毫米波带通滤波器为例进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Process surrogate model for variability analysis of RF circuits
Non-intrusive methods for studying processes involving variables changing such as design optimization, manufacture variation etc. require evaluations of the quantity of interests for a numerous times. These methods, hence, rely on an accurate surrogate model of the process under study. Gaussian Process (GP) is a well-known non-parametric modeling technique for surrogate modeling. This paper explores the effectiveness of GP to model RF applications. The analysis of a milimeter-wave bandpass filter is presented to illustrate the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信