{"title":"射频电路变异性分析的高斯过程替代模型","authors":"Thong Nguyen, J. Schutt-Ainé","doi":"10.1109/EDAPS50281.2020.9312886","DOIUrl":null,"url":null,"abstract":"Non-intrusive methods for studying processes involving variables changing such as design optimization, manufacture variation etc. require evaluations of the quantity of interests for a numerous times. These methods, hence, rely on an accurate surrogate model of the process under study. Gaussian Process (GP) is a well-known non-parametric modeling technique for surrogate modeling. This paper explores the effectiveness of GP to model RF applications. The analysis of a milimeter-wave bandpass filter is presented to illustrate the method.","PeriodicalId":137699,"journal":{"name":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gaussian Process surrogate model for variability analysis of RF circuits\",\"authors\":\"Thong Nguyen, J. Schutt-Ainé\",\"doi\":\"10.1109/EDAPS50281.2020.9312886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive methods for studying processes involving variables changing such as design optimization, manufacture variation etc. require evaluations of the quantity of interests for a numerous times. These methods, hence, rely on an accurate surrogate model of the process under study. Gaussian Process (GP) is a well-known non-parametric modeling technique for surrogate modeling. This paper explores the effectiveness of GP to model RF applications. The analysis of a milimeter-wave bandpass filter is presented to illustrate the method.\",\"PeriodicalId\":137699,\"journal\":{\"name\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"volume\":\"122 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDAPS50281.2020.9312886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Design of Advanced Packaging and Systems (EDAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDAPS50281.2020.9312886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gaussian Process surrogate model for variability analysis of RF circuits
Non-intrusive methods for studying processes involving variables changing such as design optimization, manufacture variation etc. require evaluations of the quantity of interests for a numerous times. These methods, hence, rely on an accurate surrogate model of the process under study. Gaussian Process (GP) is a well-known non-parametric modeling technique for surrogate modeling. This paper explores the effectiveness of GP to model RF applications. The analysis of a milimeter-wave bandpass filter is presented to illustrate the method.