用于时态声明模型的快速综合数据感知日志生成

Giacomo Bergami
{"title":"用于时态声明模型的快速综合数据感知日志生成","authors":"Giacomo Bergami","doi":"10.1145/3594778.3594881","DOIUrl":null,"url":null,"abstract":"Business Process Management algorithms are heavily limited by suboptimal algorithmic implementations that cannot leverage state-of-the-art algorithms in the field of relational and graph databases. The recent interest in this discipline for various IT sectors (cyber-security, Industry 4.0, and e-Health) calls for defining new algorithms improving the performance of existing ones. This paper focuses on generating several traces collected in a log from declarative temporal models by pre-emptively representing those as a specific type of finite state automaton: we show that this task boils down to a single-source multi-target graph traversal on such automaton where both the number of distinct paths to be visited as well as their length are bounded. This paper presents a novel algorithm running in polynomial time over the size of the declarative model represented as a graph and the desired log's size. The final experiments show that the resulting algorithm outperforms the state-of-the-art data-aware and dataless sequence generations in business process management.","PeriodicalId":371215,"journal":{"name":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"62 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Synthetic Data-Aware Log Generation for Temporal Declarative Models\",\"authors\":\"Giacomo Bergami\",\"doi\":\"10.1145/3594778.3594881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Business Process Management algorithms are heavily limited by suboptimal algorithmic implementations that cannot leverage state-of-the-art algorithms in the field of relational and graph databases. The recent interest in this discipline for various IT sectors (cyber-security, Industry 4.0, and e-Health) calls for defining new algorithms improving the performance of existing ones. This paper focuses on generating several traces collected in a log from declarative temporal models by pre-emptively representing those as a specific type of finite state automaton: we show that this task boils down to a single-source multi-target graph traversal on such automaton where both the number of distinct paths to be visited as well as their length are bounded. This paper presents a novel algorithm running in polynomial time over the size of the declarative model represented as a graph and the desired log's size. The final experiments show that the resulting algorithm outperforms the state-of-the-art data-aware and dataless sequence generations in business process management.\",\"PeriodicalId\":371215,\"journal\":{\"name\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"62 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3594778.3594881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th Joint Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3594778.3594881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

业务流程管理算法受到次优算法实现的严重限制,这些算法无法利用关系数据库和图形数据库领域中最先进的算法。最近,各个IT部门(网络安全、工业4.0和电子健康)对这一学科的兴趣要求定义新的算法来改进现有算法的性能。本文着重于通过将声明性时间模型先发制人地表示为特定类型的有限状态自动机来生成日志中收集的几个轨迹:我们表明,该任务归结为在这种自动机上的单源多目标图遍历,其中要访问的不同路径的数量及其长度都是有限的。本文提出了一种新的算法,在以图表示的声明性模型的大小和所需日志的大小的多项式时间内运行。最后的实验表明,所得到的算法在业务流程管理中优于最先进的数据感知和无数据序列生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Synthetic Data-Aware Log Generation for Temporal Declarative Models
Business Process Management algorithms are heavily limited by suboptimal algorithmic implementations that cannot leverage state-of-the-art algorithms in the field of relational and graph databases. The recent interest in this discipline for various IT sectors (cyber-security, Industry 4.0, and e-Health) calls for defining new algorithms improving the performance of existing ones. This paper focuses on generating several traces collected in a log from declarative temporal models by pre-emptively representing those as a specific type of finite state automaton: we show that this task boils down to a single-source multi-target graph traversal on such automaton where both the number of distinct paths to be visited as well as their length are bounded. This paper presents a novel algorithm running in polynomial time over the size of the declarative model represented as a graph and the desired log's size. The final experiments show that the resulting algorithm outperforms the state-of-the-art data-aware and dataless sequence generations in business process management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信