Cedille中不可预知编码归纳的一般推导

Denis Firsov, Aaron Stump
{"title":"Cedille中不可预知编码归纳的一般推导","authors":"Denis Firsov, Aaron Stump","doi":"10.1145/3167087","DOIUrl":null,"url":null,"abstract":"This paper presents generic derivations of induction for impredicatively typed lambda-encoded datatypes, in the Cedille type theory. Cedille is a pure type theory extending the Curry-style Calculus of Constructions with implicit products, primitive heterogeneous equality, and dependent intersections. All data erase to pure lambda terms, and there is no built-in notion of datatype. The derivations are generic in the sense that we derive induction for any datatype which arises as the least fixed point of a signature functor. We consider Church-style and Mendler-style lambda-encodings. Moreover, the isomorphism of these encodings is proved. Also, we formalize Lambek's lemma as a consequence of expected laws of cancellation, reflection, and fusion.","PeriodicalId":273972,"journal":{"name":"Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs","volume":"36 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Generic derivation of induction for impredicative encodings in Cedille\",\"authors\":\"Denis Firsov, Aaron Stump\",\"doi\":\"10.1145/3167087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents generic derivations of induction for impredicatively typed lambda-encoded datatypes, in the Cedille type theory. Cedille is a pure type theory extending the Curry-style Calculus of Constructions with implicit products, primitive heterogeneous equality, and dependent intersections. All data erase to pure lambda terms, and there is no built-in notion of datatype. The derivations are generic in the sense that we derive induction for any datatype which arises as the least fixed point of a signature functor. We consider Church-style and Mendler-style lambda-encodings. Moreover, the isomorphism of these encodings is proved. Also, we formalize Lambek's lemma as a consequence of expected laws of cancellation, reflection, and fusion.\",\"PeriodicalId\":273972,\"journal\":{\"name\":\"Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs\",\"volume\":\"36 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3167087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3167087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文给出了Cedille类型理论中不可预测类型lambda编码数据类型的归纳的泛型推导。Cedille是一种纯类型理论,扩展了具有隐积、原始异质相等和相依交的Curry-style构造演算。所有数据都擦除为纯lambda项,并且没有内置的数据类型概念。这些推导是泛型的,在这个意义上,我们对任何作为签名函子的最小不动点出现的数据类型都推导出归纳。我们考虑Church-style和Mendler-style的lambda编码。此外,还证明了这些编码的同构性。此外,我们将Lambek引理形式化为对消、反射和融合预期定律的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic derivation of induction for impredicative encodings in Cedille
This paper presents generic derivations of induction for impredicatively typed lambda-encoded datatypes, in the Cedille type theory. Cedille is a pure type theory extending the Curry-style Calculus of Constructions with implicit products, primitive heterogeneous equality, and dependent intersections. All data erase to pure lambda terms, and there is no built-in notion of datatype. The derivations are generic in the sense that we derive induction for any datatype which arises as the least fixed point of a signature functor. We consider Church-style and Mendler-style lambda-encodings. Moreover, the isomorphism of these encodings is proved. Also, we formalize Lambek's lemma as a consequence of expected laws of cancellation, reflection, and fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信