动态CIM网络中数据优化分配的并行算法

I. Remedios, K. Efe, L. Delcambre
{"title":"动态CIM网络中数据优化分配的并行算法","authors":"I. Remedios, K. Efe, L. Delcambre","doi":"10.1109/ICSI.1992.217266","DOIUrl":null,"url":null,"abstract":"An efficient, massively parallel optimization technique is developed for solving the dynamic data allocation problem in medium to large scale applications such as computer integrated manufacturing (CIM) systems. This method is based on a significantly reduced feasible state search space. A statistical evaluation framework compares the performance of the proposed technique with other dynamic data allocation strategies. Algorithms are actually implemented for a variety of I/O task activation scenarios, with the number of task activation nodes ranging from 50 to 250. The overall performance of the proposed method has a significant improvement over other optimization strategies, especially as the number of task activation nodes increases.<<ETX>>","PeriodicalId":129031,"journal":{"name":"Proceedings of the Second International Conference on Systems Integration","volume":"248 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel algorithms for optimal data allocation in a dynamic CIM network\",\"authors\":\"I. Remedios, K. Efe, L. Delcambre\",\"doi\":\"10.1109/ICSI.1992.217266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient, massively parallel optimization technique is developed for solving the dynamic data allocation problem in medium to large scale applications such as computer integrated manufacturing (CIM) systems. This method is based on a significantly reduced feasible state search space. A statistical evaluation framework compares the performance of the proposed technique with other dynamic data allocation strategies. Algorithms are actually implemented for a variety of I/O task activation scenarios, with the number of task activation nodes ranging from 50 to 250. The overall performance of the proposed method has a significant improvement over other optimization strategies, especially as the number of task activation nodes increases.<<ETX>>\",\"PeriodicalId\":129031,\"journal\":{\"name\":\"Proceedings of the Second International Conference on Systems Integration\",\"volume\":\"248 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second International Conference on Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSI.1992.217266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSI.1992.217266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为解决计算机集成制造(CIM)系统等中大型应用中的动态数据分配问题,提出了一种高效的大规模并行优化技术。该方法基于显著缩减的可行状态搜索空间。统计评估框架比较了该技术与其他动态数据分配策略的性能。算法实际上是为各种I/O任务激活场景实现的,任务激活节点的数量从50到250不等。与其他优化策略相比,该方法的总体性能有显著提高,特别是当任务激活节点数量增加时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel algorithms for optimal data allocation in a dynamic CIM network
An efficient, massively parallel optimization technique is developed for solving the dynamic data allocation problem in medium to large scale applications such as computer integrated manufacturing (CIM) systems. This method is based on a significantly reduced feasible state search space. A statistical evaluation framework compares the performance of the proposed technique with other dynamic data allocation strategies. Algorithms are actually implemented for a variety of I/O task activation scenarios, with the number of task activation nodes ranging from 50 to 250. The overall performance of the proposed method has a significant improvement over other optimization strategies, especially as the number of task activation nodes increases.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信