使用声音源信息的鲁棒说话人识别

S. Nidhyananthan, R. Kumari, G. Jaffino
{"title":"使用声音源信息的鲁棒说话人识别","authors":"S. Nidhyananthan, R. Kumari, G. Jaffino","doi":"10.1109/ICDCSYST.2012.6188700","DOIUrl":null,"url":null,"abstract":"This paper highlights the effectiveness of Wavelet Octave COefficients of Residues (WOCOR) based feature extraction for robust text-independent speaker identification. A new feature set, WOCOR is proposed to capture the spectro temporal source excitation characteristics of the speech signal. This work is focused to increase the identification accuracy with databases containing short length speech signal. Experimental evaluation is carried out on TIMIT database with 630 speakers using Gaussian Mixture Model (GMM) is used as classifier. Vocal source feature is used to extract the information from the residual signal. The vocal source information contains pitch, pitch frequency and phase in the residual signal. In this project, 93.02% Identification rate is achieved in WOCOR.","PeriodicalId":356188,"journal":{"name":"2012 International Conference on Devices, Circuits and Systems (ICDCS)","volume":"647 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Robust speaker identification using vocal source information\",\"authors\":\"S. Nidhyananthan, R. Kumari, G. Jaffino\",\"doi\":\"10.1109/ICDCSYST.2012.6188700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the effectiveness of Wavelet Octave COefficients of Residues (WOCOR) based feature extraction for robust text-independent speaker identification. A new feature set, WOCOR is proposed to capture the spectro temporal source excitation characteristics of the speech signal. This work is focused to increase the identification accuracy with databases containing short length speech signal. Experimental evaluation is carried out on TIMIT database with 630 speakers using Gaussian Mixture Model (GMM) is used as classifier. Vocal source feature is used to extract the information from the residual signal. The vocal source information contains pitch, pitch frequency and phase in the residual signal. In this project, 93.02% Identification rate is achieved in WOCOR.\",\"PeriodicalId\":356188,\"journal\":{\"name\":\"2012 International Conference on Devices, Circuits and Systems (ICDCS)\",\"volume\":\"647 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Devices, Circuits and Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCSYST.2012.6188700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Devices, Circuits and Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSYST.2012.6188700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文重点研究了基于小波残差系数(WOCOR)的特征提取在鲁棒文本无关说话人识别中的有效性。提出了一种新的特征集WOCOR来捕捉语音信号的频谱-时间源激励特征。本文的研究重点是提高短长度语音信号数据库的识别精度。采用高斯混合模型(Gaussian Mixture Model, GMM)作为分类器,在TIMIT数据库中对630个扬声器进行了实验评价。利用声源特征从残差信号中提取信息。声源信息包含残余信号中的音高、音高频率和相位。在本项目中,WOCOR的识别率达到93.02%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust speaker identification using vocal source information
This paper highlights the effectiveness of Wavelet Octave COefficients of Residues (WOCOR) based feature extraction for robust text-independent speaker identification. A new feature set, WOCOR is proposed to capture the spectro temporal source excitation characteristics of the speech signal. This work is focused to increase the identification accuracy with databases containing short length speech signal. Experimental evaluation is carried out on TIMIT database with 630 speakers using Gaussian Mixture Model (GMM) is used as classifier. Vocal source feature is used to extract the information from the residual signal. The vocal source information contains pitch, pitch frequency and phase in the residual signal. In this project, 93.02% Identification rate is achieved in WOCOR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信