D. Stavrakoudis, P. Mastorocostas, Ioannis B. Theocharis
{"title":"一种用于肺音分离的流水线递归模糊神经滤波器","authors":"D. Stavrakoudis, P. Mastorocostas, Ioannis B. Theocharis","doi":"10.1109/FUZZY.2007.4295339","DOIUrl":null,"url":null,"abstract":"This paper presents a recurrent fuzzy-neural filter that performs the task of separation of lung sounds, obtained from patients with pulmonary pathology. The filter is a pipelined Takagi-Sugeno-Kang recurrent fuzzy network, consisting of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. Extensive experimental results, regarding the lung sound category of crackles, are given, and a performance comparison with a series of other fuzzy and neural filters is conducted, underlining the separation capabilities of the proposed filter.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Pipelined Recurrent Fuzzy Neural Filter for the Separation of Lung Sounds\",\"authors\":\"D. Stavrakoudis, P. Mastorocostas, Ioannis B. Theocharis\",\"doi\":\"10.1109/FUZZY.2007.4295339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a recurrent fuzzy-neural filter that performs the task of separation of lung sounds, obtained from patients with pulmonary pathology. The filter is a pipelined Takagi-Sugeno-Kang recurrent fuzzy network, consisting of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. Extensive experimental results, regarding the lung sound category of crackles, are given, and a performance comparison with a series of other fuzzy and neural filters is conducted, underlining the separation capabilities of the proposed filter.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Pipelined Recurrent Fuzzy Neural Filter for the Separation of Lung Sounds
This paper presents a recurrent fuzzy-neural filter that performs the task of separation of lung sounds, obtained from patients with pulmonary pathology. The filter is a pipelined Takagi-Sugeno-Kang recurrent fuzzy network, consisting of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. Extensive experimental results, regarding the lung sound category of crackles, are given, and a performance comparison with a series of other fuzzy and neural filters is conducted, underlining the separation capabilities of the proposed filter.