{"title":"具有区间不确定性的无人机路径规划两层优化框架","authors":"Bai Li, R. Chiong, Mu Lin","doi":"10.1109/CIPLS.2014.7007170","DOIUrl":null,"url":null,"abstract":"We propose a two-layer optimization framework for the unmanned aerial vehicle path planning problem to handle interval uncertainties that exist in the combat field. When evaluating a candidate flight path, we first calculate the interval response (i.e., the upper and lower bounds) of the candidate flight path within the inner layer of the framework using a collocation interval analysis method (CIAM). Then, in the outer layer, we introduce a novel criterion for interval response comparison. The artificial bee colony algorithm is used to search for the optimal flight path according to this new criterion. Our experimental results show that the CIAM adopted is a feasible option, which largely eases the computational burden. Moreover, our derived flight paths can effectively handle bounded uncertainties without knowing the corresponding uncertainty distributions.","PeriodicalId":325296,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A two-layer optimization framework for UAV path planning with interval uncertainties\",\"authors\":\"Bai Li, R. Chiong, Mu Lin\",\"doi\":\"10.1109/CIPLS.2014.7007170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a two-layer optimization framework for the unmanned aerial vehicle path planning problem to handle interval uncertainties that exist in the combat field. When evaluating a candidate flight path, we first calculate the interval response (i.e., the upper and lower bounds) of the candidate flight path within the inner layer of the framework using a collocation interval analysis method (CIAM). Then, in the outer layer, we introduce a novel criterion for interval response comparison. The artificial bee colony algorithm is used to search for the optimal flight path according to this new criterion. Our experimental results show that the CIAM adopted is a feasible option, which largely eases the computational burden. Moreover, our derived flight paths can effectively handle bounded uncertainties without knowing the corresponding uncertainty distributions.\",\"PeriodicalId\":325296,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIPLS.2014.7007170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Production and Logistics Systems (CIPLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIPLS.2014.7007170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A two-layer optimization framework for UAV path planning with interval uncertainties
We propose a two-layer optimization framework for the unmanned aerial vehicle path planning problem to handle interval uncertainties that exist in the combat field. When evaluating a candidate flight path, we first calculate the interval response (i.e., the upper and lower bounds) of the candidate flight path within the inner layer of the framework using a collocation interval analysis method (CIAM). Then, in the outer layer, we introduce a novel criterion for interval response comparison. The artificial bee colony algorithm is used to search for the optimal flight path according to this new criterion. Our experimental results show that the CIAM adopted is a feasible option, which largely eases the computational burden. Moreover, our derived flight paths can effectively handle bounded uncertainties without knowing the corresponding uncertainty distributions.