{"title":"基于Fisher判别词典学习方法的文本独立说话人识别","authors":"Xia Wang, Qian Yin, Ping Guo","doi":"10.1109/CIS.2012.103","DOIUrl":null,"url":null,"abstract":"In last decades, text-independent speaker recognition is a hot research topic attracted many researchers. In this paper, we proposed to apply the Fisher discrimination dictionary learning method to identify the text-independent speaker recognition. The feature used in classification is the Gaussian Mixture Model super vector. The proposed method is evaluated with public ally available dataset TIMIT. Experimental results show that the proposed method outperforms the Sparse Representation Classifier used for text-independent speaker recognition in both clean and noisy condition.","PeriodicalId":294394,"journal":{"name":"2012 Eighth International Conference on Computational Intelligence and Security","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Text-independent Speaker Identification Using Fisher Discrimination Dictionary Learning Method\",\"authors\":\"Xia Wang, Qian Yin, Ping Guo\",\"doi\":\"10.1109/CIS.2012.103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In last decades, text-independent speaker recognition is a hot research topic attracted many researchers. In this paper, we proposed to apply the Fisher discrimination dictionary learning method to identify the text-independent speaker recognition. The feature used in classification is the Gaussian Mixture Model super vector. The proposed method is evaluated with public ally available dataset TIMIT. Experimental results show that the proposed method outperforms the Sparse Representation Classifier used for text-independent speaker recognition in both clean and noisy condition.\",\"PeriodicalId\":294394,\"journal\":{\"name\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Eighth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2012.103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2012.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Text-independent Speaker Identification Using Fisher Discrimination Dictionary Learning Method
In last decades, text-independent speaker recognition is a hot research topic attracted many researchers. In this paper, we proposed to apply the Fisher discrimination dictionary learning method to identify the text-independent speaker recognition. The feature used in classification is the Gaussian Mixture Model super vector. The proposed method is evaluated with public ally available dataset TIMIT. Experimental results show that the proposed method outperforms the Sparse Representation Classifier used for text-independent speaker recognition in both clean and noisy condition.