V. Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, Ni Trieu
{"title":"基于对称密钥技术的实用多方私集交集","authors":"V. Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, Ni Trieu","doi":"10.1145/3133956.3134065","DOIUrl":null,"url":null,"abstract":"We present a new paradigm for multi-party private set intersection (PSI) that allows $n$ parties to compute the intersection of their datasets without revealing any additional information. We explore a variety of instantiations of this paradigm. Our protocols avoid computationally expensive public-key operations and are secure in the presence of any number of semi-honest participants (i.e., without an honest majority). We demonstrate the practicality of our protocols with an implementation. To the best of our knowledge, this is the first implementation of a multi-party PSI protocol. For 5 parties with data-sets of 220 items each, our protocol requires only 72 seconds. In an optimization achieving a slightly weaker variant of security (augmented semi-honest model), the same task requires only 22 seconds. The technical core of our protocol is oblivious evaluation of a programmable pseudorandom function (OPPRF), which we instantiate in three different ways. We believe our new OPPRF abstraction and constructions may be of independent interest.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"150","resultStr":"{\"title\":\"Practical Multi-party Private Set Intersection from Symmetric-Key Techniques\",\"authors\":\"V. Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, Ni Trieu\",\"doi\":\"10.1145/3133956.3134065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new paradigm for multi-party private set intersection (PSI) that allows $n$ parties to compute the intersection of their datasets without revealing any additional information. We explore a variety of instantiations of this paradigm. Our protocols avoid computationally expensive public-key operations and are secure in the presence of any number of semi-honest participants (i.e., without an honest majority). We demonstrate the practicality of our protocols with an implementation. To the best of our knowledge, this is the first implementation of a multi-party PSI protocol. For 5 parties with data-sets of 220 items each, our protocol requires only 72 seconds. In an optimization achieving a slightly weaker variant of security (augmented semi-honest model), the same task requires only 22 seconds. The technical core of our protocol is oblivious evaluation of a programmable pseudorandom function (OPPRF), which we instantiate in three different ways. We believe our new OPPRF abstraction and constructions may be of independent interest.\",\"PeriodicalId\":191367,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"150\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3133956.3134065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical Multi-party Private Set Intersection from Symmetric-Key Techniques
We present a new paradigm for multi-party private set intersection (PSI) that allows $n$ parties to compute the intersection of their datasets without revealing any additional information. We explore a variety of instantiations of this paradigm. Our protocols avoid computationally expensive public-key operations and are secure in the presence of any number of semi-honest participants (i.e., without an honest majority). We demonstrate the practicality of our protocols with an implementation. To the best of our knowledge, this is the first implementation of a multi-party PSI protocol. For 5 parties with data-sets of 220 items each, our protocol requires only 72 seconds. In an optimization achieving a slightly weaker variant of security (augmented semi-honest model), the same task requires only 22 seconds. The technical core of our protocol is oblivious evaluation of a programmable pseudorandom function (OPPRF), which we instantiate in three different ways. We believe our new OPPRF abstraction and constructions may be of independent interest.