神经网络环境遮挡

Daniel Holden, Jun Saito, T. Komura
{"title":"神经网络环境遮挡","authors":"Daniel Holden, Jun Saito, T. Komura","doi":"10.1145/3005358.3005387","DOIUrl":null,"url":null,"abstract":"We present Neural Network Ambient Occlusion (NNAO), a fast, accurate screen space ambient occlusion algorithm that uses a neural network to learn an optimal approximation of the ambient occlusion effect. Our network is carefully designed such that it can be computed in a single pass allowing it to be used as a drop-in replacement for existing screen space ambient occlusion techniques.","PeriodicalId":242138,"journal":{"name":"SIGGRAPH ASIA 2016 Technical Briefs","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Neural network ambient occlusion\",\"authors\":\"Daniel Holden, Jun Saito, T. Komura\",\"doi\":\"10.1145/3005358.3005387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Neural Network Ambient Occlusion (NNAO), a fast, accurate screen space ambient occlusion algorithm that uses a neural network to learn an optimal approximation of the ambient occlusion effect. Our network is carefully designed such that it can be computed in a single pass allowing it to be used as a drop-in replacement for existing screen space ambient occlusion techniques.\",\"PeriodicalId\":242138,\"journal\":{\"name\":\"SIGGRAPH ASIA 2016 Technical Briefs\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH ASIA 2016 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3005358.3005387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH ASIA 2016 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3005358.3005387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了神经网络环境遮挡(NNAO),一种快速,准确的屏幕空间环境遮挡算法,它使用神经网络来学习环境遮挡效果的最佳近似值。我们的网络是精心设计的,这样它可以在一个通道中计算,允许它被用作现有屏幕空间环境遮挡技术的替代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network ambient occlusion
We present Neural Network Ambient Occlusion (NNAO), a fast, accurate screen space ambient occlusion algorithm that uses a neural network to learn an optimal approximation of the ambient occlusion effect. Our network is carefully designed such that it can be computed in a single pass allowing it to be used as a drop-in replacement for existing screen space ambient occlusion techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信