具有全局n折旋转对称的切割投影菱形瓷砖的有效构造

Victor H. Lutfalla
{"title":"具有全局n折旋转对称的切割投影菱形瓷砖的有效构造","authors":"Victor H. Lutfalla","doi":"10.4230/OASIcs.AUTOMATA.2021.9","DOIUrl":null,"url":null,"abstract":"We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold rotational symmetry for any n. This construction is based on the dualization of regular n-fold multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on trigonometric diophantine equations. A SageMath program that computes these tilings and outputs svg files is publicly available in [7]. 2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Mathematics of computing → Combinatorics","PeriodicalId":124625,"journal":{"name":"International Workshop on Cellular Automata and Discrete Complex Systems","volume":" 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry\",\"authors\":\"Victor H. Lutfalla\",\"doi\":\"10.4230/OASIcs.AUTOMATA.2021.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold rotational symmetry for any n. This construction is based on the dualization of regular n-fold multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on trigonometric diophantine equations. A SageMath program that computes these tilings and outputs svg files is publicly available in [7]. 2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Mathematics of computing → Combinatorics\",\"PeriodicalId\":124625,\"journal\":{\"name\":\"International Workshop on Cellular Automata and Discrete Complex Systems\",\"volume\":\" 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Cellular Automata and Discrete Complex Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/OASIcs.AUTOMATA.2021.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Cellular Automata and Discrete Complex Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.AUTOMATA.2021.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文基于正则n重多重网格的对偶化,给出了具有全局n重旋转对称的菱形切割投影拼接的一种明确有效的构造。重点是为了证明这些多重网格的规律性,为此我们使用了一个三角丢番图方程的结果。计算这些平铺并输出svg文件的SageMath程序在[7]中公开可用。2012 ACM学科分类计算数学→离散数学;计算数学→组合数学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Effective Construction for Cut-And-Project Rhombus Tilings with Global n-Fold Rotational Symmetry
We give an explicit and effective construction for rhombus cut-and-project tilings with global n-fold rotational symmetry for any n. This construction is based on the dualization of regular n-fold multigrids. The main point is to prove the regularity of these multigrids, for this we use a result on trigonometric diophantine equations. A SageMath program that computes these tilings and outputs svg files is publicly available in [7]. 2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Mathematics of computing → Combinatorics
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信