Oussama Djedidi, M. Djeziri, N. M'Sirdi, A. Naamane
{"title":"构建用于嵌入式系统和智能手机的精确和高性能功率分析器","authors":"Oussama Djedidi, M. Djeziri, N. M'Sirdi, A. Naamane","doi":"10.1145/3242102.3242139","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to present a new accurate power profiler for embedded systems and smartphones. The second objective is, for it, to be a tutorial explaining the main steps to build power profilers for embedded and mobile systems, in general. We start our work by firstly describing the general methodology of building a power profiler. Then, we showcase how each step is undertaken to build a profiler with two power models. The first one was an artificial neural network (called N2) that presented a lot of noise in its estimation. After debugging and improvement, the second model, a NARX neural network (we call N3) was built. It eliminated all the drawback of the first model and had a mean absolute percentage error of 2.8%.","PeriodicalId":241359,"journal":{"name":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"24 51","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Constructing an Accurate and a High-Performance Power Profiler for Embedded Systems and Smartphones\",\"authors\":\"Oussama Djedidi, M. Djeziri, N. M'Sirdi, A. Naamane\",\"doi\":\"10.1145/3242102.3242139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to present a new accurate power profiler for embedded systems and smartphones. The second objective is, for it, to be a tutorial explaining the main steps to build power profilers for embedded and mobile systems, in general. We start our work by firstly describing the general methodology of building a power profiler. Then, we showcase how each step is undertaken to build a profiler with two power models. The first one was an artificial neural network (called N2) that presented a lot of noise in its estimation. After debugging and improvement, the second model, a NARX neural network (we call N3) was built. It eliminated all the drawback of the first model and had a mean absolute percentage error of 2.8%.\",\"PeriodicalId\":241359,\"journal\":{\"name\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"volume\":\"24 51\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3242102.3242139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242102.3242139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing an Accurate and a High-Performance Power Profiler for Embedded Systems and Smartphones
The main objective of this paper is to present a new accurate power profiler for embedded systems and smartphones. The second objective is, for it, to be a tutorial explaining the main steps to build power profilers for embedded and mobile systems, in general. We start our work by firstly describing the general methodology of building a power profiler. Then, we showcase how each step is undertaken to build a profiler with two power models. The first one was an artificial neural network (called N2) that presented a lot of noise in its estimation. After debugging and improvement, the second model, a NARX neural network (we call N3) was built. It eliminated all the drawback of the first model and had a mean absolute percentage error of 2.8%.