基于结构变量的子集特征选择

J. A. Urrutia, P. Estévez, J. Vergara
{"title":"基于结构变量的子集特征选择","authors":"J. A. Urrutia, P. Estévez, J. Vergara","doi":"10.1109/LA-CCI48322.2021.9769843","DOIUrl":null,"url":null,"abstract":"In this work we propose a novel method for subset feature selection based on mutual information. We introduce structural parameters that define the probability of selecting each feature. These parameters are adjusted by maximizing the information that sampled groups of features have about a class and at the same time minimizing the size of the group. After training, the parameters are used to select a subset of features. Results on four synthetic datasets are reported, where each dataset poses a different challenge, ranging from finding synergy to avoiding redundancy. We compare these results with those of eight other mutual information based feature selection methods. Our method outperforms the other eight feature selection methods on the four synthetic datasets.","PeriodicalId":431041,"journal":{"name":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","volume":"61 41","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Subset Feature Selection with Structural Variables\",\"authors\":\"J. A. Urrutia, P. Estévez, J. Vergara\",\"doi\":\"10.1109/LA-CCI48322.2021.9769843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose a novel method for subset feature selection based on mutual information. We introduce structural parameters that define the probability of selecting each feature. These parameters are adjusted by maximizing the information that sampled groups of features have about a class and at the same time minimizing the size of the group. After training, the parameters are used to select a subset of features. Results on four synthetic datasets are reported, where each dataset poses a different challenge, ranging from finding synergy to avoiding redundancy. We compare these results with those of eight other mutual information based feature selection methods. Our method outperforms the other eight feature selection methods on the four synthetic datasets.\",\"PeriodicalId\":431041,\"journal\":{\"name\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"volume\":\"61 41\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LA-CCI48322.2021.9769843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin American Conference on Computational Intelligence (LA-CCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LA-CCI48322.2021.9769843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于互信息的子集特征选择方法。我们引入结构参数来定义选择每个特征的概率。这些参数是通过最大化采样特征组所具有的关于一个类的信息,同时最小化组的大小来调整的。训练后,使用这些参数来选择特征子集。报告了四个合成数据集的结果,其中每个数据集都提出了不同的挑战,从寻找协同作用到避免冗余。我们将这些结果与其他八种基于互信息的特征选择方法的结果进行了比较。在四种合成数据集上,我们的方法优于其他八种特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subset Feature Selection with Structural Variables
In this work we propose a novel method for subset feature selection based on mutual information. We introduce structural parameters that define the probability of selecting each feature. These parameters are adjusted by maximizing the information that sampled groups of features have about a class and at the same time minimizing the size of the group. After training, the parameters are used to select a subset of features. Results on four synthetic datasets are reported, where each dataset poses a different challenge, ranging from finding synergy to avoiding redundancy. We compare these results with those of eight other mutual information based feature selection methods. Our method outperforms the other eight feature selection methods on the four synthetic datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信