基于多小波和集分割算法的图像压缩新方法

U. S. Ragupathy, D. Baskar, A. Tamilarasi
{"title":"基于多小波和集分割算法的图像压缩新方法","authors":"U. S. Ragupathy, D. Baskar, A. Tamilarasi","doi":"10.1109/ICIINFS.2008.4798373","DOIUrl":null,"url":null,"abstract":"Advances in wavelet transforms and quantization methods have produced algorithms capable of surpassing the existing image compression standards like the joint photographic experts group (JPEG) algorithm. The existing compression methods for JPEG standards are using DCT with arithmetic coding and DWT with Huffman coding. The DCT uses a single kernel where as wavelet offers more number of filters depends on the applications. The wavelet based set partitioning in hierarchical trees (SPIHT) algorithm gives better compression. For best performance in image compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry, but they cannot simultaneously possess all of these properties. The relatively new field of multiwavelets offer more design options and can combine all desirable transform features. But there are some limitations in using the SPIHT algorithm for multiwavelet coefficients. This paper presents a new method for encoding the multiwavelet decomposed images by defining coefficients suitable for SPIHT algorithm which gives better compression performance over the existing methods in many cases.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"56 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"New Method of Image Compression Using Multiwavelets and Set Partitioning Algorithm\",\"authors\":\"U. S. Ragupathy, D. Baskar, A. Tamilarasi\",\"doi\":\"10.1109/ICIINFS.2008.4798373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in wavelet transforms and quantization methods have produced algorithms capable of surpassing the existing image compression standards like the joint photographic experts group (JPEG) algorithm. The existing compression methods for JPEG standards are using DCT with arithmetic coding and DWT with Huffman coding. The DCT uses a single kernel where as wavelet offers more number of filters depends on the applications. The wavelet based set partitioning in hierarchical trees (SPIHT) algorithm gives better compression. For best performance in image compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry, but they cannot simultaneously possess all of these properties. The relatively new field of multiwavelets offer more design options and can combine all desirable transform features. But there are some limitations in using the SPIHT algorithm for multiwavelet coefficients. This paper presents a new method for encoding the multiwavelet decomposed images by defining coefficients suitable for SPIHT algorithm which gives better compression performance over the existing methods in many cases.\",\"PeriodicalId\":429889,\"journal\":{\"name\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"volume\":\"56 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2008.4798373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

小波变换和量化方法的进步产生了超越现有图像压缩标准的算法,如联合摄影专家组(JPEG)算法。现有的JPEG标准压缩方法主要有算术编码的DCT和霍夫曼编码的DWT。DCT使用单个内核,而小波则根据应用程序提供更多数量的滤波器。基于小波的分层树集划分(SPIHT)算法具有较好的压缩效果。为了在图像压缩中获得最佳性能,小波变换要求滤波器结合许多理想的特性,如正交性和对称性,但它们不能同时拥有所有这些特性。相对较新的多小波领域提供了更多的设计选择,并且可以结合所有理想的变换特征。但是对于多小波系数的SPIHT算法存在一定的局限性。本文通过定义适合SPIHT算法的系数,提出了一种对多小波分解后的图像进行编码的新方法,在许多情况下比现有方法具有更好的压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Method of Image Compression Using Multiwavelets and Set Partitioning Algorithm
Advances in wavelet transforms and quantization methods have produced algorithms capable of surpassing the existing image compression standards like the joint photographic experts group (JPEG) algorithm. The existing compression methods for JPEG standards are using DCT with arithmetic coding and DWT with Huffman coding. The DCT uses a single kernel where as wavelet offers more number of filters depends on the applications. The wavelet based set partitioning in hierarchical trees (SPIHT) algorithm gives better compression. For best performance in image compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry, but they cannot simultaneously possess all of these properties. The relatively new field of multiwavelets offer more design options and can combine all desirable transform features. But there are some limitations in using the SPIHT algorithm for multiwavelet coefficients. This paper presents a new method for encoding the multiwavelet decomposed images by defining coefficients suitable for SPIHT algorithm which gives better compression performance over the existing methods in many cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信