时间序列预测的自适应多项式神经网络

P. Liatsis, A. Foka, J. Goulermas, L. Mandic
{"title":"时间序列预测的自适应多项式神经网络","authors":"P. Liatsis, A. Foka, J. Goulermas, L. Mandic","doi":"10.1109/ELMAR.2007.4418795","DOIUrl":null,"url":null,"abstract":"Time series prediction involves the determination of an appropriate model, which can encapsulate the dynamics of the system, described by the sample data. Previous work has demonstrated the potential of neural networks in predicting the behaviour of complex, non-linear systems. In particular, the class of polynomial neural networks has been shown to possess universal approximation properties, while ensuring robustness to noise and missing data, good generalisation and rapid learning. In this work, a polynomial neural network is proposed, whose structure and weight values are determined with the use of evolutionary computing. The resulting networks allow an insight into the relationships underlying the input data, hence allowing a qualitative analysis of the models' performance. The approach is tested on a variety of non-linear time series data.","PeriodicalId":170000,"journal":{"name":"ELMAR 2007","volume":" 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Adaptive polynomial neural networks for times series forecasting\",\"authors\":\"P. Liatsis, A. Foka, J. Goulermas, L. Mandic\",\"doi\":\"10.1109/ELMAR.2007.4418795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time series prediction involves the determination of an appropriate model, which can encapsulate the dynamics of the system, described by the sample data. Previous work has demonstrated the potential of neural networks in predicting the behaviour of complex, non-linear systems. In particular, the class of polynomial neural networks has been shown to possess universal approximation properties, while ensuring robustness to noise and missing data, good generalisation and rapid learning. In this work, a polynomial neural network is proposed, whose structure and weight values are determined with the use of evolutionary computing. The resulting networks allow an insight into the relationships underlying the input data, hence allowing a qualitative analysis of the models' performance. The approach is tested on a variety of non-linear time series data.\",\"PeriodicalId\":170000,\"journal\":{\"name\":\"ELMAR 2007\",\"volume\":\" 16\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELMAR 2007\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELMAR.2007.4418795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELMAR 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2007.4418795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

时间序列预测包括确定一个合适的模型,该模型可以封装由样本数据描述的系统动态。以前的工作已经证明了神经网络在预测复杂非线性系统行为方面的潜力。特别是,多项式神经网络已被证明具有普遍的近似性质,同时确保对噪声和缺失数据的鲁棒性,良好的泛化和快速学习。本文提出了一种多项式神经网络,利用进化计算确定其结构和权值。由此产生的网络允许深入了解输入数据背后的关系,从而允许对模型的性能进行定性分析。该方法在各种非线性时间序列数据上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive polynomial neural networks for times series forecasting
Time series prediction involves the determination of an appropriate model, which can encapsulate the dynamics of the system, described by the sample data. Previous work has demonstrated the potential of neural networks in predicting the behaviour of complex, non-linear systems. In particular, the class of polynomial neural networks has been shown to possess universal approximation properties, while ensuring robustness to noise and missing data, good generalisation and rapid learning. In this work, a polynomial neural network is proposed, whose structure and weight values are determined with the use of evolutionary computing. The resulting networks allow an insight into the relationships underlying the input data, hence allowing a qualitative analysis of the models' performance. The approach is tested on a variety of non-linear time series data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信