随机传感器动力学遍历勘探

G. D. L. Torre, K. Flaßkamp, A. Prabhakar, T. Murphey
{"title":"随机传感器动力学遍历勘探","authors":"G. D. L. Torre, K. Flaßkamp, A. Prabhakar, T. Murphey","doi":"10.1109/ACC.2016.7525371","DOIUrl":null,"url":null,"abstract":"Ergodic exploration has been shown to be an effective framework for autonomous sensing and exploration. The objective of ergodic control is to minimize the difference between the distribution of the time-averaged sensor trajectory and a spatial probability distribution function representing information density. Therefore, the time a sensor spends sampling a particular region is manipulated to correspond to the anticipated information density of that region. This paper introduces a trajectory optimization approach for ergodic exploration in the presence of stochastic sensor dynamics. The stochastic differential dynamic programming algorithm is formulated in the context of ergodic exploration. Numerical studies demonstrate the proposed framework's ability to mitigate stochastic effects.","PeriodicalId":137983,"journal":{"name":"2016 American Control Conference (ACC)","volume":"57 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Ergodic exploration with stochastic sensor dynamics\",\"authors\":\"G. D. L. Torre, K. Flaßkamp, A. Prabhakar, T. Murphey\",\"doi\":\"10.1109/ACC.2016.7525371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ergodic exploration has been shown to be an effective framework for autonomous sensing and exploration. The objective of ergodic control is to minimize the difference between the distribution of the time-averaged sensor trajectory and a spatial probability distribution function representing information density. Therefore, the time a sensor spends sampling a particular region is manipulated to correspond to the anticipated information density of that region. This paper introduces a trajectory optimization approach for ergodic exploration in the presence of stochastic sensor dynamics. The stochastic differential dynamic programming algorithm is formulated in the context of ergodic exploration. Numerical studies demonstrate the proposed framework's ability to mitigate stochastic effects.\",\"PeriodicalId\":137983,\"journal\":{\"name\":\"2016 American Control Conference (ACC)\",\"volume\":\"57 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2016.7525371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2016.7525371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

遍历探测已被证明是一种有效的自主感知和探测框架。遍历控制的目标是最小化时间平均传感器轨迹分布与表示信息密度的空间概率分布函数之间的差异。因此,传感器对特定区域进行采样所花费的时间被控制为与该区域的预期信息密度相对应。本文介绍了一种随机传感器动力学下遍历探测的轨迹优化方法。在遍历勘探的背景下,提出了随机微分动态规划算法。数值研究表明,所提出的框架能够减轻随机效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ergodic exploration with stochastic sensor dynamics
Ergodic exploration has been shown to be an effective framework for autonomous sensing and exploration. The objective of ergodic control is to minimize the difference between the distribution of the time-averaged sensor trajectory and a spatial probability distribution function representing information density. Therefore, the time a sensor spends sampling a particular region is manipulated to correspond to the anticipated information density of that region. This paper introduces a trajectory optimization approach for ergodic exploration in the presence of stochastic sensor dynamics. The stochastic differential dynamic programming algorithm is formulated in the context of ergodic exploration. Numerical studies demonstrate the proposed framework's ability to mitigate stochastic effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信