用点配点法分析非线性锥形功能梯度梁的振动

Reza Adelkhani, J. Ghanbari
{"title":"用点配点法分析非线性锥形功能梯度梁的振动","authors":"Reza Adelkhani, J. Ghanbari","doi":"10.1080/15502287.2021.1964638","DOIUrl":null,"url":null,"abstract":"Abstract Free transverse vibration of variable cross-section cantilever FG beams with nonlinear profiles is investigated in this paper. Four thickness functions, namely, linear, parabolic, sinusoidal, and exponential functions are assumed for variation of the cross-section of the beam. Linear and exponential grading rules for axially varying material properties are covered in this paper. The governing differential equation is solved using the weighted residual collocation method with the exact solution shape functions for the uniform beam as the trial functions. This choice for the trial functions showed an increase in the convergence rate. The Gauss–Legendre points are used as the collocation points to reduce the fluctuations in the convergence curve as usually encountered in the point collocation method. The effects of the taper parameter for all kinds of thickness functions on the natural frequencies are studied. The effects of various parameters, including taper parameter, profile, and grading function on the natural frequencies are investigated. Also, a series of finite element simulations are performed for comparison purposes. It is observed that the obtained results are in good agreement with the numerical simulations and available published data with vastly reduced computational cost as a result of using the collocation method.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"905 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Vibration analysis of nonlinear tapered functionally graded beams using point collocation method\",\"authors\":\"Reza Adelkhani, J. Ghanbari\",\"doi\":\"10.1080/15502287.2021.1964638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Free transverse vibration of variable cross-section cantilever FG beams with nonlinear profiles is investigated in this paper. Four thickness functions, namely, linear, parabolic, sinusoidal, and exponential functions are assumed for variation of the cross-section of the beam. Linear and exponential grading rules for axially varying material properties are covered in this paper. The governing differential equation is solved using the weighted residual collocation method with the exact solution shape functions for the uniform beam as the trial functions. This choice for the trial functions showed an increase in the convergence rate. The Gauss–Legendre points are used as the collocation points to reduce the fluctuations in the convergence curve as usually encountered in the point collocation method. The effects of the taper parameter for all kinds of thickness functions on the natural frequencies are studied. The effects of various parameters, including taper parameter, profile, and grading function on the natural frequencies are investigated. Also, a series of finite element simulations are performed for comparison purposes. It is observed that the obtained results are in good agreement with the numerical simulations and available published data with vastly reduced computational cost as a result of using the collocation method.\",\"PeriodicalId\":315058,\"journal\":{\"name\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"volume\":\"905 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Computational Methods in Engineering Science and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15502287.2021.1964638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2021.1964638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了具有非线性截面的变截面FG悬臂梁的自由横向振动问题。假设梁截面的变化有四种厚度函数,即线性函数、抛物线函数、正弦函数和指数函数。本文讨论了轴向变化的材料性能的线性和指数级配规则。以均匀梁的精确解形函数为试函数,采用加权残差配点法求解控制微分方程。这种试验函数的选择表明了收敛速度的提高。采用高斯-勒让德点作为配点法,减少了配点法中经常遇到的收敛曲线波动。研究了各种厚度函数的锥度参数对固有频率的影响。研究了锥度参数、轮廓和分级函数等参数对固有频率的影响。此外,为了进行比较,还进行了一系列的有限元模拟。结果表明,所得到的结果与数值模拟和已发表的数据吻合较好,并大大降低了配点法的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vibration analysis of nonlinear tapered functionally graded beams using point collocation method
Abstract Free transverse vibration of variable cross-section cantilever FG beams with nonlinear profiles is investigated in this paper. Four thickness functions, namely, linear, parabolic, sinusoidal, and exponential functions are assumed for variation of the cross-section of the beam. Linear and exponential grading rules for axially varying material properties are covered in this paper. The governing differential equation is solved using the weighted residual collocation method with the exact solution shape functions for the uniform beam as the trial functions. This choice for the trial functions showed an increase in the convergence rate. The Gauss–Legendre points are used as the collocation points to reduce the fluctuations in the convergence curve as usually encountered in the point collocation method. The effects of the taper parameter for all kinds of thickness functions on the natural frequencies are studied. The effects of various parameters, including taper parameter, profile, and grading function on the natural frequencies are investigated. Also, a series of finite element simulations are performed for comparison purposes. It is observed that the obtained results are in good agreement with the numerical simulations and available published data with vastly reduced computational cost as a result of using the collocation method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信